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A new approach is presented for determining the rigid
regions in proteins and the flexible joints between them. The
short-range forces in proteins are modeled as constraints
and we use a recently developed formalism from graph
theory to analyze flexibility in the bond network. Forces
included in the analysis are the covalent bond-stretching
and bond-bending forces, salt bridges, and hydrogen bonds.
We use a local function to associate an energy with indi-
vidual hydrogen bonds, which then can be included or
excluded depending on the bond strength. Colored maps of
the rigid and flexible regions provide a direct visualization
of where the motion of the protein can take place, consistent
with these distance constraints. We also define a flexibility
index that quantifies the local density of flexible or floppy
modes, in terms of the dihedral angles that remain free to
rotate in each flexible region. A negative flexibility index
provides a measure of the density of redundant bonds in
rigid regions.

A new application of this approach is to simulate the maximal
range of possible motions of the flexible regions by introducing
Monte Carlo changes in the free dihedral angles, subject to the
distance constraints. This is done using a method that maintains
closure of the rings formed by covalent and hydrogen bonds in the
flexible parts of the protein, and van der Waals overlaps between
atoms are avoided. We use the locus of the possible motions of
HIV protease as an example; movies of its motion can be seen at
http://www.pa.msu.edu/~lei. © 2001 by Elsevier Science Inc.

INTRODUCTION

In this paper, we develop methods to probe the flexibility of
proteins. Within a given force constant model, it is possible to
simplify the forces to give a first approximation of the flexi-
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bility of the protein, subject to the strongest constraints within
the structure. In this approach, the strong local forces [salt
bridges, covalent and hydrogen bonds] are taken to be infi-
nitely strong and treated as constraints. All other, weaker forces
are not included. This simplification allows the use of moderm
constraint theory to find the rigid clusters within the protein
and the flexible joints between them. This is reviewed in the
first half of this study in the section entitled Statics. We then
use these static results to explore possible motions of the
protein, using an unbiased Monte Carlo sampling of the free
dihedral angles in the structure. Such motion involves the
flexible joints while maintaining the constraints. In the Discus-
sion section that follows, we examine the possibility of going
further and using more realistic potentials in the Monte Carlo
simulations, and also using the static results to speed up mo-
lecular dynamics simulations by using two time scales.

STATICS
Modeling the Forces Within Proteins

Bonding forces within proteins impose distance constraints
between atoms and reduce the total number of degrees of
freedom available to the protein. These distance constraints can
be viewed as a network of interactions in which flexibility and
rigidity can be computed by graph theoretic approaches imple-
mented in a computer program called FIRST,' which stands for
Floppy Inclusion and Rigid Substructure Topography. This
approach, originated by Thorpe et al., has been applied previ-
ously to problems in material science, such as percolation
through rigid networks and the prediction of phase transitions.?

To utilize FIRST, it is important to include those forces that
carry the most biological significance. An objective way to
select the correct forces is to consider the spectrum of forces,
from strongest to weakest, as shown in Figure 1. The covalent
bonding within the protein resulting from bond-bending, tor-
stonal, and bond-stretching (central) forces defines a natural set
of distance constraints. A central force bond is a bond that has
a force acting along the line connecting the two atoms and

1093-3263/01/$—see front matter
PIT S1093-3263(00)00122-4



Microscopic Interactions

+ Weak

Umol = Ucp +Upg+ Ugg +Un

Strong

+ Up + Ugther

AN

van der Waals,
weak electrostatic,
and non-bonded
forces

Dihedral/torsional
rotations

Hydrogen bond range

— Salt bridges

U — Covalent bond bending

—»  Covalent bond stretching

Figure 1. A schematic representation of the ordering of
microscopic forces from the strongest to the weakest. Dis-
tance constraints are used in FIRST to model strong bond-
ing forces to the left of a sliding pointer. This approach
defines a network of covalent bonds, salt bridges, and
hydrogen bonds in the protein. FIRST analyzes the result-
ing constraint network to locate the rigid and flexible re-
gions. Note that the peptide bond and other bonds with
partial-double or double-bond character are always locked,
and therefore to the left of the pointer, but are not shown
explicitly in the diagram.

bringing it back to an equilibrium length if it gets too long or
too short. The torsional forces associated with peptide bonds
and the other partial-double and double bonds in proteins
effectively prevent dihedral rotation about that bond. In con-
sidering the effects of thermal energy on the kinetics of a
protein structure, it is useful to note that bonds with energies of
approximately 0.6 kcal/mol (the energy RT associated with
room temperature, where R is the gas constant) are susceptible
to breaking and reforming at room temperature.

Hydrogen bonds have high directional dependence and act
over short ranges in contrast to the hydrophobic force. There-
fore it is reasonable to expect that the buried hydrogen bonds
will be substantially maintained as the protein undergoes con-
formational changes near its native structure. Modeling hydro-
gen bonds as distance constraints is a simple way to incorporate
these directional and short-range properties of hydrogen bond-
ing. Some recent molecular dynamics results by Lu and Schul-
ten® suggest that the breaking of hydrogen bonds occurs as a
well-defined event involving going over an energy barrier, as
opposed to a continuous stretching until a feeble final breaking
occurs.

It is common practice to represent the degrees of freedom
accessible to a protein by fixing the covalent bond lengths and
covalent bond angles, while allowing the dihedral angles to
rotate. Using the rotatable dihedral angles as a set of internal
coordinates, the number of degrees of freedom to describe the

flexibility of a protein is typically reduced by a factor of about
seven relative to a Cartesian representation.* Even more de-
grees of freedom are eliminated when the bonds from salt
bridges and hydrogen bonds are incorporated, resulting in
larger rigid regions.

Beyond covalent bonds, salt bridges and hydrogen bonds
form the next strongest interactions within proteins (see Figure
1). Periodic hydrogen-bonding patterns between main-chain
amide and carbonyl groups form the secondary structures of
a-helices, B-sheets, and reverse turns. Hydrogen bonds also
stabilize the tertiary structure of proteins through side-chain
interactions that interlock nonadjacent parts of the protein
chain. Hydrogen bonds vary in strength from nearly as strong
as covalent bonds to almost as weak as van der Waals inter-
actions.>¢

Whether a hydrogen bond is included in the bond network
used in the graph-theoretic analysis of FIRST depends upon its
geometry and energy. For the majority of crystallographic
structures of proteins determined by X-ray diffraction, the
hydrogen atom positions are not defined; therefore, we have
used the Whatlf software package to assign polar hydrogen
atoms in positions optimal for hydrogen bonding.” Initially a
superset of possible hydrogen bonds is assigned, based on the
following geometric criteria®: the donor—acceptor distance, d, is
less than 3.6A; the hydrogen—acceptor distance, , is less than
2.6A; and the donor-hydrogen—acceptor angle 6 is between
90° and 180°. These parameters are illustrated in Figure 2.

We use a local energy function that includes a central force
part and an angular term F(6, ¢, y) depending on the chemistry
of the donor and acceptor sites. This is similar to the potential
used by Dahiyat et al.,® except that we have modified the
angular part, F(6, ¢, ), to contain an additional exponential
term so that the function becomes exponentially small for g
angles less than ~120° rather than falling to zero at 90°. This
modified angular function F(0, ¢, v) generally removes hydro-
gen bonds with 6 = 120° when coupled with a cutoff energy of
—0.01kcal/mol. This avoids the inclusion of main-chain hy-
drogen bonds between the i and i+3 residues in the middle of
a-helices and other unphysical hydrogen bonds. In this model,
helices are properly held together by hydrogen bonds between
the residues / and i+4. Using this function, we apply an energy
threshold of —0.01 kcal/mol (only including those hydrogen
bonds with this or more favorable energy) to eliminate the large
number of extremely weak hydrogen bonds. Whereas the ab-

Figure 2. The geometry used in the hydrogen-bond energy
potential, Eyg, given in Equation 1. Here 0 is the donor —
hydrogen — acceptor angle, ¢ is the hydrogen — acceptor —
base angle, d is the donor — acceptor distance, v is the
hydrogen — acceptor distance, and vy (not shown) is the
angle between the normals to the planes defined by the
bonds from the donor and acceptor.
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solute energy values from this function may not be exact, it
provides a useful way to rank the hydrogen bonds in a protein
according to their relative energy. The hydrogen bond energy,
Eyg, is a function of the equilibrium hydrogen bond distance,
dy, and well depth (optimal energy), V,,, as well as the angular
term F(6, ¢, y):

dO 12 dO 10
EHB=V0{5<d> —6<§> }F(ﬂ,qb,v)

where, for an

F = cos?0 exp( — [7 — 0]
(1)

sp® donor — sp* acceptor,

cos?(¢p — 109.5)

sp” donor — sp* acceptor, F = cos’fexp( — [7— 6]
cos’p

sp? donor — sp® acceptor, F = {cos?@exp(—[7 — 6]}

sp? donor — sp* acceptor, F = cos?6 exp( — [7 — 6]
cos*(max[¢,y])

and V,, = 8 kcal/mol and d, = 2.8A. Figure 2 illustrates how
dy 6, and ¢ relate to the donor (N), hydrogen (H), acceptor (O),
and base atom (C) geometry for the case of an amide-carbonyl
main-chain hydrogen bond. In this case, vy is the out-of-plane
angle of C—O relative to N—H.

Salt bridges can be viewed as strong hydrogen bonds® with
average energies of —6 *4 kcal/mol.!° Salt bridges have
broader distance and angular distributions than are found for
nonionic hydrogen bonds, likely due to their Coulombic com-
ponent. These observed distributions are not well reflected by
hydrogen-bond energy functions as those found in (1). Salt
bridges within these geometric ranges are generally stronger
interactions than hydrogen bonds. Our identification of such
salt bridges follows previous studies!!-!3 by extending the
maximum distance between donor and acceptor to 4.6A and
including all such salt bridges as constraints.

For hydrogen bonds, we can tune the energy threshold used
to define which hydrogen bonds are included in the bond
network (the sliding pointer in Figure 1). Moving the pointer to
the right includes weaker hydrogen bonds, which are common
in proteins and can contribute significantly to stability. The
ability to select or exclude hydrogen bonds based on strength
allows investigation of how the flexibility in each region of the
protein varies as hydrogen bonds are added or subtracted from
the network. Individual hydrogen bonds or small sets of hy-
drogen bonds that form critical crosslinks can also be identified
in this way.!*

Van der Waals and hydrophobic forces are examples of
nonbonding forces found in proteins. Each individual van der
Waals interaction is too weak to model as a distance constraint,
yet collectively the van der Waals interactions play an impor-
tant role in determining steric conformational constraints. Hy-
drophobic interactions are likely dominant in driving a protein
to fold,'> and play an important role in stabilizing the native
state. However, the hydrophobic and van der Waals forces are
nonspecific (slippery) and therefore are not modeled by dis-
tance constraints between pairs of atoms. Our goal here is to
test the extent to which salt bridges and covalent and hydrogen
bonds can accurately define the degrees of freedom accessible
to a protein.
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Three-Dimensional Bond-Bending Networks

The covalent and hydrogen-bond connectivity of a protein can
be completely described by the nearest neighbor central-force
constraints, which include the associated bond-bending next
nearest neighbor distance constraints. The latter define the
angular geometry around an atom, e.g., that an sp>-hybridized
atom maintains tetrahedral coordination. The only elementary
flexible unit that exists within a bond-bending network is a
hinge joint, which corresponds to a rotatable dihedral angle. As
with rigid clusters, flexible regions can be separated into un-
derconstrained regions based on their collective motions.
Hinge joints can only occur about axes defined by central-force
distance constraints, never about a bond-bending distance con-
straint, which defines the bond angles according to an atom’s
chemistry (e.g., sp® hybridization).'s Hinge joints separate rigid
clusters. The number of hinge joints will generally be consid-
erably more than the number of residual internal degrees of
freedom in the network. This means that many of the dihedral
angles associated with the hinge joints are interdependent, and
all hinge joints sharing the same degree(s) of freedom are
grouped together into collective motions. Rotations through a
dihedral angle about the axis of a central-force constraint
corresponding to a single bond are possible, but may be locked
because of the surrounding network, leading to conformational
constraints.!”-'8 Furthermore, for double and partial-double
bonds, the dihedral angle is fixed, represented here by incor-
porating a third neighbor distance constraint. Along the main
chain there are two dihedral angles about which rotations are
possible for each residue (conventionally called ® and V), and
the dihedral angle associated with the peptide bond (£2) is
locked.

Intuitively, one expects that a large rigid cluster, consisting
of many weak hydrogen bonds, will not be as stable as a similar
rigid cluster involving stronger hydrogen bonds. Of course, the
strongest rigid substructures within any large rigid region will
be the set of small rigid clusters defined by the covalent
bonding. The hierarchical approach of gradually selecting
weaker and weaker hydrogen bonds allows us to assess the
relative degree of stability (as a continuum measure) between
different regions in the protein. However, before we accom-
plish this task, we first construct a quantitative measure for
local flexibility and rigidity (stability).

As part of the analysis of FIRST, a protein is decomposed
into rigid and flexible regions.'-? These rigid regions are further
classified as overconstrained or isostatic. An overconstrained
region (rigid cluster) is one that has more constraints than are
necessary to lock all dihedral angles (hinge joints). Thus in an
overconstrained region, there are no independent degrees of
freedom, but in fact a number of extra constraints. This leads to
the idea of redundant constraints, which then can be removed,
leaving the cluster still rigid. Isostatic clusters are just rigid,
because the number of independent internal degrees of freedom
is exactly balanced by the number of constraints. If a constraint
is removed from an isostatic cluster, that cluster becomes
flexible and decomposes into at least two parts.

It is worth mentioning that although the worst-case compu-
tational complexity of FIRST is O(N?), it runs in O(N) in
practice, where N is the number of atoms.! The same results as
those obtained by FIRST can be obtained using a brute force
matrix method, but such a method is infeasible for large mo-
lecular systems because its computational complexity is O(N).



This can be reduced to O(N®) by special methods. We have
checked the rigid region decomposition using the brute force
method against FIRST for many networks up to N = 450, and
there has been exact agreement between the two methods in
each case.

Quantitative Flexibility and Rigidity

A flexible region consisting of many interconnected rigid clus-
ters may define a collective motion having only a few inde-
pendent degrees of freedom. This flexible region, although
underconstrained, could be nearly rigid and thus mechanically
stable. However, some rigid regions have more constraints than
are needed to maintain structural stability. Due to this contin-
uum between underconstrained and overconstrained regions in
the network, a continuous flexibility index is useful.

The total number of floppy modes in a protein, F, corre-
sponds to the number of internal independent degrees of free-
dom. To obtain F, the six trivial rigid body degrees of freedom
(three rotational and three translational degrees of freedom for
the molecule as a whole) must be subtracted from the total
number of independent degrees of freedom. The global count
of the number of floppy modes gives a good sense of overall
flexibility. However, FIRST also locates each underconstrained
region and the number of floppy modes within each such
region. A quantitative measure of flexibility can be obtained by
tracking how the floppy modes are spatially distributed
throughout the protein. Similarly, a global count for the number
of redundant constraints gives a sense of the overall stability
(rigidity) of a protein. FIRST identifies where the overcon-
strained regions are located and how many redundant con-
straints are present in each region. In a similar way to that done
with the floppy modes, a better measure for the degree of
rigidity can be obtained by tracking how the redundant con-
straints are distributed throughout the protein.

The flexibility index, f;, characterizes the degree of flexibil-
ity for the i™ central-force bond in the protein. Let H, and F,
respectively denote the number of hinge joints (rotatable dihe-
drals) and the number of floppy modes (internal independent
degrees of freedom) within the k™ underconstrained region. Let
C; and R, respectively denote the number of central-force bonds
and the number of redundant constraints within the j* over-
constrained region. Combining these, a quantitative measure
for both the degree of flexibility associated with floppy modes,
and the degree of rigidity associated with redundant con-
straints, is obtained. This flexibility index is given by:

F
_k for flexible region k
H,
fi= 0 for an isostatic region 2)
c ! for rigid region j

J

When the i* central-force bond is a hinge joint, the flexibility
index is defined by the number of floppy modes divided by the
total number of hinge joints within that underconstrained re-
gion. The number of floppy modes corresponds to the number
of independent dihedral angle rotations that can be made within
the underconstrained region. When the i central-force bond is
not a hinge joint, it must be part of a rigid cluster, which may
or may not be overconstrained. If the central-force bond is
within an overconstrained region, the flexibility index is as-

signed a negative value, with magnitude given by the number
of redundant constraints divided by the total number of central-
force bonds within the region.

FIRST Results for HIV Protease

Figure 3 shows the analysis FIRST can provide for any indi-
vidual protein structure. In this case, the protein structure is the
open conformation of HIV protease. Crystallographically, this
is a structure of moderate resolution, 2.7 A, with a crystallo-
graphic residual error (R-factor) of 0.19. Two B-hairpin flaps in
HIV protease structures are essential for allowing access of
substrates and inhibitors to the active site, and are shown at the
top of Figures 3A and 3B. These flaps close over such ligands
to isolate them in the active site away from solvent'®. Without
an inhibitor in the structure, these flaps are free to move®.
However, attaching an inhibitor to the protein restricts the
motion of these flaps, which are then linked to each other or the
ligand through hydrogen bonds. In Figure 3A, we show the
rigid region decomposition of the complete protein, including
the side groups. The protein’s hydrogen bonds, with an energy
cut-off of —0.01 kcal/mol, are shown as thin black lines. In
Figure 3B, we show a ribbon diagram of flexibility, with the
scale indicated to the right. The most flexible regions are red,
the isostatic (just rigid) regions are gray, and the most rigid
(overconstrained) regions are dark blue. Because only the main
chain is represented (though the side groups were included in
the calculation), this view provides an indication of regions in
which significant conformational change is possible. The two
flaps appear at the top, and along with the small loops at the
sides (two (-turns appearing in red and yellow in Figure 3B),
they are the most flexible regions in the protein. The majority
of HIV protease forms a rigid region (blue) forming a cavity
(center) for interaction with ligands.

DYNAMICS

We can now use the static results from FIRST as input and
introduce dynamics to study the range of motions accessible to
the protein. The simplest way is to let the flexible regions of the
protein move in an unbiased way using Monte Carlo moves. In
this approach, small atomic motions are made in the flexible
regions, then care is taken to ensure that all the original bond
constraints are obeyed. This involves paying particular atten-
tion to ring closures, which we do by introducing a fictitious
energy and subsequently adjusting the location of the other
atoms. In all cases we have to avoid van der Waals overlaps
between atoms.

RING DYNAMICS AND CLOSURE

An isolated n-fold single ring, with no double bonds, has 3n
total degrees of freedom. The number of bond length con-
straints is #, the number of bond angle constraints is », and the
number of trivial rigid-body degrees of freedom is 6. Thus, the
total number of floppy modesis3n —n —n — 6 =n — 6. If
n < 6, the ring is overconstrained. If n = 6, the ring is isostatic
or just rigid. A six-fold ring has two conformations: the chair
and the boat, and there is a potential barrier between these two
conformations. A ring is floppy only if it is larger than 6-fold,
since there are n — 6 floppy modes in an n-fold ring.

An n-fold single ring has 3n Cartesian coordinates but only
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Figure 3. The open conformation of HIV protease (PDB code: 1hhp) with a hydrogen-bond energy threshold of E_,, = —0.01
keal/mol. (A) The rigid cluster decomposition. Any region of continuous color, blue for example, signifies that these atoms belong
to the same rigid cluster. Bonds that split into two colors (e.g. yellow and red) indicate flexible joints. At each of these color
interfaces is a rotatable dihedral bond (hinge joint). Hydrogen bonds and salt bridges are shown as black lines. (B) A ribbon
diagram of the flexibility index. This image shows the flexibility index, f,, mapped onto the C, atoms on the main chain of the protein.

The spectrum used to color the ribbon goes from red (flexible and underconstrained) through gray (isostatic) to blue (rigid and
overconstrained).
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n dihedral angles. Thus there is an advantage to using the n
dihedral angles as variables. Since the number of degrees of
freedom of the ring is » — 6, there must be 6 independent
equations to fix the ring conformation. In previous work, Go
and Scheraga 2! developed nine equations as the requirements
for the ring to close, which we give in a modified and compact
form below:

d() + T()Rldl + ...+ ToR]TIRz e Tn*ZRn>ldn—l =(

TORITIRZ e Tn*ZRn~lTn~1Rn =1 (3)

in which

d; cosf, —sinf, O
d=1|0 T,=1| sin 6, cos 0, 0
0 0 0

1

1 0 0
R,=| 0 cosw;, —sinw; (4)

0 sinw; cos w;

and 4, is the distance from the atom i—1 to the atom i, 0, is the
supplement of the angle within a ring at atom i, and w;, is the
dihedral angle associated with the bond between atom i—1 and
atom i. The first vector equation in (3) expresses the fact that
atom 0 and atom » in an r-fold ring are at the same position in
space, and the second matrix equation in (3) expresses the fact
that the angle at the ring closure has its correct prescribed
value. The quantity / is the unit matrix. The first equation in (3)
introduces 3 independent constraints. Of the 9 additional con-
straints introduced in the second matrix equation in (3), an
additional 3 are independent, giving a total of 6 independent
constraints associated with ring closure.

These equations are called ring closure equations. Every
atom is positioned obeying the bond length and bond angle
constraints, and rotated about the previous bond with the di-
hedral angle specified by o, _,. Atom »n will be at the origin if
the ring closes itself. This is accomplished by the first vector
equation (3). The direction of atom # to atom n+ 1should be the
same as that of first atom to the second atom, which is the
second matrix equation in (3). Once the n—6 dihedral angles
are set, the remaining 6 unknowns can be solved from the ring
closure equations. All these equations are nonlinear. Go and
Scheraga?' 22 showed that if the 6 unknown dihedral angles are
in sequence, these nonlinear equations can be solved analyti-
cally and the number of independent solutions or ring confor-
mations can be as high as 4. This solution was used to calculate
the structure of long peptide chains such as cyclo-hexaglycyl
with C,, I, or S, symmetries.2> Numerical methods have to be
applied to deal with the most common cases where the un-
known dihedral bonds are not in sequence, where there is no
symmetry, or where nonpeptide bonds such as hydrogen bonds
are present in the rings.

Intercorrelated Rings

When rings are interconnected, additional angle constraints
arise between the rings. An example is shown in Figure 4, in
which two rings share the same bond AB. In addition to the
bond angle and bond distance constraints already counted in
each ring, two more angle constraints, £ CAD and ZEBF,
appear. These extra angle constraints introduce a correlation
between the dihedral angle of bond AB in the left and right

E
F

Figure 4. Two seven-fold rings share the same bond AB,
which introduces two extra angle constraints, ZCAD and
£ EBF.

rings. In the coordinates where atoms E, B, and A are fixed, a
change of the dihedral angle of bond AB in the left ring alters
the position of atom C. Because of the additional inter-ring
angle constraints of ZCAD, the atom B has to move to keep
this angle fixed. Because atom F is fixed by the angle con-
straints of ZEBF while atom D changes its position, the
dihedral angle of bond AB in the right ring changes as well. In
other words, the dihedral angles of the same bond in different
rings that share this bond are not independent. The changes of
dihedral angles of the same bond are the same in all rings
sharing this bond. Thus the interconnection between rings
reduces the number of independent variables, and hence re-
duces the degrees of freedom. For example, two separate
seven-fold rings have two floppy modes, but only one when
they share a common bond, as shown in Figure 4.

Proteins often contain some four-, five-, and six-fold rings,
as well as larger rings. The large rings, with size greater than
six, are flexible if they are not connected with any other rings
and do not contain any peptide bonds. Not only can the inter-
ring connections hold the rings together in one rigid cluster, but
they also reduce the number of floppy modes in flexible rings.
The majority of such inter-ring connections involve hydrogen
bonds that link the rings together sufficiently to form compli-
cated correlated motions in the protein.

Network and Branch Atoms

We can partition the atoms in the protein into two types
according to the topological properties of the atoms. We define
network atoms as atoms that belong to a ring—excluding the
internal rings associated with the side groups—proline, phe-
nylalanine, histidine, tyrosine, and tryptophan. The atoms in
these internal rings may become network atoms if they are
members of other rings, such as those formed by hydrogen
bonds. Therefore, each network atom has at least two other
network atoms as neighbors. All other atoms are called branch
atoms. In Figure 5, atom A is a network atom, while atom B is

Figure 5. This figure shows the difference between a net-
work atom (A) and a branch atom (B). Network atoms are
atoms that belong to a ring—excluding the internal rings
associated with the side groups. All other atoms are branch
atoms.
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a branch atom.

Once the rigidity or flexibility of every atom is determined
by FIRST, the floppy regions are decomposed into irreducible
rings. An irreducible ring is such that there is no shorter path
between any two atoms within the ring than the path within the
irreducible ring itself. Every irreducible ring has its own ring
closure equations to satisfy. The total number of equations is
9M, where M is the number of irreducible rings. The number of
variables is the total number of bonds that belong to these
irreducible rings. This means that if the value of the dihedral
angle of one shared bond is adjusted in one set of ring closure
equations (3), its dihedral angles in all the rings that share this
bond should be adjusted accordingly. The dihedral angles of
peptide bonds are always fixed, of course.

Monte Carlo Constrained Dynamics

The Monte Carlo dynamics proceeds as follows. We randomly
select a few bonds in each flexible region and randomly make
small changes in their dihedral angles. These bonds are called
selected bonds. The dihedral angles of the selected bonds are
not allowed to change during one iteration of searching for a
new conformation. The more selected bonds there are, the less
likely it will be to find a solution for the dihedral angles of the
remaining bonds to satisfy the ring closure equations (3) in
every irreducible ring. An extreme case will illustrate this
point. Assume the dihedral angles of six out of seven bonds in
a seven-fold ring are arbitrarily changed from their initial
values. In that case, it is highly unlikely that there is a suitable
value for the remaining dihedral angle that will close the ring.
But selecting too few bonds limits the range of conformational
change that is sampled. We have found that a good ratio of the
fraction of the number of selected bonds to the total number of
bonds in a flexible region lies between 0.1 and 0.2. As for the
dihedral angles of selected bonds, they should not be changed
too much at each iteration, otherwise the system may go over
a barrier to get from one allowed conformation to another. We
are only searching for continuous deformations in this work,
and introduce a fictitious energy E,

E= (do +ToRdy + v ve - + ToRT\R; - -+ 'Tn—an—ldn—l)2

+ E(ToRleRz ...... T, Ry T, R, — D (5)

y

where the elements of the 3-by-3 matrix are given by the
subscripts ij.

We solve for the dihedral angles of the remaining flexible
bonds. To solve this general case, it is necessary to go beyond
previous work, which has only addressed special cases (as
described previously). The nonlinear equations for all the rings
must be solved simultaneously. To do this, we use the fictitious
energy function as given in (5), and search for a minimum. This
is not a real energy, but is constructed such that if a minimum
energy of zero can be found, this means that all the equations
(3) are all satisfied simultaneously. Any numerical minimiza-
tion method is suitable for this, and we use the conjugate
gradient code from Numerical Recipes.?> This procedure is
essentially the same as putting in central forces between atoms
0 and » and atoms 1 and n—1 to close each irreducible ring at
the correct angle.

If the above energy (5) can be minimized to zero, then there
exist solutions to the ring closure equations (3). Otherwise, that
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step is aborted and any changes are discarded, and a new
iteration is begun. If a solution to the ring closure equations (3)
exists, we then use a simplex method to calculate the coordi-
nates of the associated branch atoms. If there are no van der
Waals collisions between atoms, we accept the new conforma-
tion and proceed to another iteration until a large number of
conformations is sampled. The simplex method?* is outlined in
the next section.

Simplex Method

Once a new conformation of the bond network is available, the
coordinates of the branch atoms have to be adjusted, subject to
the constraints and making sure to avoid all collisions due to
the van der Waals radii overlapping. The bond angle and bond
length constraints form equations that are equalities, while the
van der Waals constraints, which are lower bounds for the
distances between pairs of atom centers (based on the sums of
their van der Waals radii), lead to inequalities. All these equa-
tions (equalities and inequalities) are nonlinear.

The simplex method requires a linear function to minimize.
The new coordinates of the branch atoms should not be far
from their original values; otherwise, they are likely to collide
with other atoms or move away from the protein. This require-
ment produces a nonlinear function to be minimized. The
nonlinear equations can then be solved by successive linear
iterations. So now we have a linear function to minimize, under
the condition that the new conformation must satisfy the linear
equations, which can be written as a constraint matrix. Both
equality and inequality constraints are present in the matrix.

The basic idea of the simplex method is that in a linear
system the extreme point of the function is located at one of the
extremities of the allowed domain. Imagine an n-dimensional
space, where every equality constraint is an n— 1 dimensional
hyperplane in the space. Every inequality equation cuts the
space into two. When all the equality and inequality constraints
are applied, the space is reduced into a lower dimensional
subspace in which all points satisfy all the constraints. Because
the function is linear, the minimum point of the function must
be at one of the extremities of the subspace, which limits the
search to a rather small number of isolated points. A detailed
explanation of the simplex method can be found in many
function optimization books.?526 This algorithm is very fast in
handling the minimization of linear functions. Because we use
linear constraints and a linear function to approximate the
nonlinear expression, the procedure must be repeated several
times to achieve an acceptable accuracy. Even so, this proce-
dure is very fast compared with other nonlinear function min-
imization methods.

Calculation Results

By repeating the procedure outlined above, we are able to
create 300 possible conformations of the HIV protease in a few
hours on a DEC Alpha 433 MHz workstation. A superposition
of these 300 conformations is shown in Figure 6. Figure 6A
shows the motion accessible to the side groups, based on
salt-bridge and covalent and hydrogen-bond constraints; Figure
6B shows the accessible range of main-chain motion, using the
same 300 conformations. We emphasize that there is no tem-
perature in this calculation, though it is a Monte Carlo proce-
dure. A new conformation is either accepted or rejected based
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Figure 6. This figure shows the superimposition of 300 allowed conformations associated with the open conformation of HIV
protease (PDBcode: 1hhp) with a hydrogen bond energy cutoff of E,,,, = —0.01 kcal/mol. An allowed conformation obeys all the
covalent and hydrogen-bond length and bond angle constraints and does not violate any van der Waals constraints. The rigid core
is indicated by the color blue. (A). The rigid region decomposition (as in Figure 3A), where motions of the main chain and side
chains can be seen. (B) The ribbon graph of the flexibility index as in Figure 3B. The motion of the flexible red regions is apparent.
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on whether every constraint is satisfied or not, and whether
there are van der Waals overlaps or not.

A movie has been made to show the path of the conforma-
tional evolution of HIV protease. This is not a MD method, so
the movie composed of the 300 conformations does not show
a time evolution of HIV protease, but merely samples the
unbiased, allowed conformations of HIV protease. These mov-
ies can be found at the web site http://www.pa.msu.edu/~lei/.
These results should not be compared with molecular dynamics
simulations, which are on short time scales of up to typically a
few nanoseconds, but rather with the motion made up by
interpolating between different experimentally observed con-
formations, as observed by Gerstein et al.,?” available at http://
bioinfo.mbb.yale.edu/perl/motreport.pl2ID=hivprot. We will
refer to these as “interpolations” between crystallographically
observed conformations. Comparing our results, visualized
here in Figure 6, with the interpolations, we find that the red
regions in Figure 6B correspond to the regions of the largest
motion in the animation, with the main flaps at the top moving
by ~7A in both cases. The motion of the other red regions in
Figure 6B is in qualitative, but not quantitative, agreement with
the animations. This is not unexpected, as the interpolations
involve conformations observed upon HIV protease binding to
different ligands, whereas we are analyzing a single, ligand-
free structure. Also, some conformations found by FIRST con-
formational sampling may be feasible but not observed in the
crystallographic structures, which only include those confor-
matjons that will crystallize in a regular lattice.

DISCUSSION

We have shown how the rigid regions and the flexible joints
between them can be identified for a protein using a static
approach involving constraints via the program FIRST. This
knowledge is extremely useful when moving on to study the
dynamics of the protein, in particular, diffusive, large-scale
motion. We have taken initial steps in the study of the dynam-
ics by just exploring the space available to the flexible part of
the protein using unbiased Monte Carlo moves and avoiding
any collisions due to overlapping van der Waals radii. We refer
to such moves as legal moves. This could be improved by using
a potential function for the protein and accepting or rejecting
legal moves based on a Metropolis?® criterion. This would
involve using a Boltzmann factor that depends on the differ-
ence in energy between the initial and new conformation, and
the temperature.

A more ambitious approach would be to use the static input
provided by FIRST in a molecular dynamics? program that
separates into two distinct time scales. Most of the time the
molecular dynamics would proceed using only the diffusive
motion associated with the flexible regions, as defined by
FIRST, and this would involve a much longer time step than
can usually be used. This would use a potential function for the
protein, projected into the subspace defined by the floppy
modes. Occasionally a full molecular dynamics simulation
would be done, which would allow the whole protein to exe-
cute higher frequency motions for a short time. While this
remains untested, it opens up the possibility of using FIRST in
a much more powerful way to probe the dynamics of proteins
using a realistic potential, going beyond the constraint model.
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CONCLUSIONS

We have shown how the strong local forces in a protein can be
used to find the rigid regions and the flexible joints between
them. This procedure takes only a few seconds of computer
time and provides a useful way to get a good initial idea of the
rigid and flexible regions of a protein. The results can be
visualized in a number of ways, some of which are shown here.
The results of this approach correlate favorably with experi-
mental measures of protein flexibility.?® We have used these
static results to investigate the possible motions of the flexible
regions of the protein, such that the bond constraints are
maintained and collisions between atoms, due to their being
closer than the sum of their van der Waals radii, are avoided.
To date we have explored the simplest dynamics using unbi-
ased Monte Carlo moves, utilizing a fictitious energy function
to ensure closure of rings of atoms in the bond network, with
a simplex method used to assure that the motion of branch
atoms does not induce van der Waals collisions. Our results
have been illustrated using HIV protease, and these techniques
can be applied to any protein whose three-dimensional struc-
ture is known.
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