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INTRODUCTION

Flexibility in Proteins and Their Interactions

The flexibility of proteins and theiigands(molecules specifically bound by proteins)
has a major influence on the ways they interact. Generally, protein molecules are thought
of as primarily rigid structures, with chemically specific and somewhat flexible side chains
attached to a main chain of fixed structure. The tendency to think of proteins as rigid is rein-
forced by the fact that X-ray crystallography, the most widely-used technique for analyzing
protein structures at atomic resolution, traps the copies of a protein molecule in the crystalline
lattice into a single state. However, as seen in Figure 1, rotatable single bonds in the main
as well as side chains of a protein provide significant potential for flexibitionformational
chang@. For a number of proteins, such as the HIV protease, lysine-arginine-ornithine bind-
ing protein, and adenylate kinase, the protein is known to undergo significant conformational
change upon binding its natural ligand or drugs designed to inhibit its activity. Flexibility is
thus a biologically essential feature of proteins.

Despite the importance and widespread interest in characterizing protein flexibility, this
remains a challenge both experimentally and computationally (see papers by David Case,
Ruben Abagyan, and Mark Gerstein in this volume). Our laboratory’s goal has been to de-
velop computational methods that incorporate realistic modeling of protein flexibility into the
design of new ligands for proteins. In collaboration with Jacobs and Thorpe (see accompany-
ing paper), we have shown that graph-theoretic analysis of the covalent and hydrogen-bond
networks in proteins using the FIRST algorithm provides an extremely fast way of assessing
large-scale flexibility in proteins, e.g., when large, independently folded regions of the pro-
tein (domaing are attached by hinge joints, resulting in clamshell-like motion. In the present
paper, we review the state of the art in template-based algorithms for analyzing protein—



ligand interactions, which reduce the orientational search for the optimal placement of the
ligand relative to the protein, and discuss how ligand flexibility is modeled in some of these
methods. Finally, we address how side-chain motion in the protein, coupled with flexibility

in the ligand, can be modeled in an algorithm that allows fast and effective computational
screening of hundreds of thousands of compounds for ligands. This methed|T®PE is

the first to model protein, as well as ligand, flexibility, in the context of screening. The iden-

tification of favorable ligand candidates is a first and crucial step in modern drug design, with
major potential to develop new therapeutics for AIDS, cancer, bacterial infection, arthritis,

and other diseases.
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Figure 1. Protein structure and intrinsic flexibilityThe basic repeating unit within a proteinyesidue is

shown at top. The side chain of the residue in this case (phenylalanine) consists of a phenyl ring (at top)
connected to the protein main chain (polynba@ckbongat the alpha-carbon. Rigid, unrotatable bonds with
partial or full double-bond character are shown by black tubes, and rotatable single bonds are shown as thin
grey tubes; carbon atoms appear in light grey and polar (oxygen or nitrogen) atoms in black. In the bottom
panel, apeptide(fragment of protein) is shown, consisting of several linked residues with various side chains.
The main chain of the polymer, formed by the repeating (amide nitrogen)—(alpha-carbon)—(carbonyl carbon and
oxygen) motif, is otlined. The N-terminus is the start of the peptide chain, and the C-terminus is its end. In
reality, not all of the flexibility implied by the singleonds is accessible, since van der Waals, hydrogen-bond,
and electrostatic interactions typically lock the protein chain into a uréiqnérmation(molecular shape) or

set of conformations dependent on its sequence of amino acid residues.

Ligand Docking and Database Screening

With the increase in computational power and availability of structural information
for proteins and small molecules, computer-based drug design has become a competitive



methodology to identify nevinhibitors (ligands that block the function of proteidsy. Al-
though computational methods do not replaceitheitro andin vivo tests during drug de-
velopment, they can be very efficient in identifying and optimizing the structures of ligand
candidates alead compounds for further development, and thus accelerate the early design
stages. Generally, there are two tasks involved in identifying leads in computational drug
design,screeninghe structures of compounds for potential ligands, dadking or opti-

mally fitting, these potential inhibitors into the binding site of the target (typically a protein).
Screening is important for reducing the vast number of potential ligands to an experimentally
testable number. Furthermore, developing methods to predict protein—ligand interactions —
in particular, predicting ligands and théimding modesor specific orientation and confor-
mation upon interaction with the protein — provides significant insights into the way proteins
work, which is always by interacting with other molecules. Docking combined with model-
ing structural modifications of the protein or ligand also provides a valuable design tool for
developing new ligands with greater specificity for a given proteinacelversa

Computational screening is often closely associated with docking, as the final evalua-
tion of ligand candidates requires a detailed evaluation of how well the ligand and protein fit
together. Docking approaches can be classified based on how they characterize the ligand-
binding site of the protein.Grid-search techniquesll the space around the binding site
with a three-dimensional grid, precompute the potentials (van der Waals, electrostatic, etc.)
at each grid point without the ligand, then sample different ligand conformations and ori-
entations on the grid and compute the resulting binding free energy. An example for this
approach is AutoDock, which used simulated annealing in its previous retéabasnow
applies a hybrid genetic algorithm to sample over the feasible binding modes of the ligand
relative to the proteih®. The advantages of grid-based docking are that a template of fa-
vorable interactions in the ligand-binding site does not need to be defined, reducing bias in
modeling the protein—ligand interactions, and evaluation of binding modes is made more ef-
ficient by precomputing protein potentials on the grid. However, the accuracy and timing of
this approach depends on the grid fineness, making this approach too computationally inten-
sive for database screening, in which thousands of molecules (as well as ligand orientations
and shapes, aonformer} need to be tested. Furthermore, precomputation of the protein
grid potentials limits this approach to rigid binding sites.

When the ligand-binding site in the protein is known, this can be utilized by construct-
ing atemplatefor ligand binding based upon favorable interaction points in the binding site.
During the search for a favorable ligand-binding mode, different conformations of the ligand
can be generated and subsets of its atoms matched to complementary template points, as a ba-
sis for docking the ligand into the binding site. Advantages to this template-based approach
are that it can incorporate known features of ligand binding (for example, conserved interac-
tions observed experimentally for known ligands), and it reduces the docking search space
to matching/V ligand atoms ont@Vv template points, rather than the 6-dimensional orienta-
tional search space (3 degrees of rotational freedom and 3 degrees of translational freedom)
required in other approaches for sampling and evaluating ligand binding.

In the well-known docking tool DOCK the template typically consists of up to 100
spheres that generate a negative image of the binding site. During the search, subsets of lig-
and atoms are matched to spheres, based on the distances between ligand atoms. DOCK has
been extended to consider chemis$tignd include hydrogen-bonding interaction centirs
addition to the shape template. Other current template approaches specify a set of interaction
points defining favorable positions for placing polar ligand atonts/drophobic(nonpolar)
centers, e.g., aromatic rings. Such a template can be generated automatically, e.g., by placing
probe points on the solvent accessible surface of the bindin,siteinteractively by super-
imposing known protein—ligand complexes to identify favorable interaction points based on



observed binding modes for known ligands. FIéxX uses a template of 400 to 800 points
when docking drug-size molecules (up to 40 atoms, not including hydrogens) to define posi-
tions for favorable interactions of hydrogen-bond donors and acceptors, metal ions, aromatic
rings, and methyl groups. The ligand is fragmented and incrementally constructed in the
binding site and matched to template points based on geonhmatsicing(indexing) tech-
nigques, bond torsional flexibility is modeled discretely, and a tree-search algorithm is used
to keep the most promising partially constructed ligand conformations during the search.
Hammerheat? uses up to 300 hydrogen-bond donor and acceptosterit (van der Waals
interaction) points to define the template, and the ligand is incrementally constructed, as
in FlexX. A fragment is docked based on matching ligand atoms and template points with
compatible internal distances, similar to the matching algorithm used in DOCK. If a new
fragment is positioned closely enough to the partially constructed ligand, the two parts are
merged, and the most promising placements kept. Other successful docking approaches, such
as GOLD'1"and the method of Oshiket al.'8, use genetic algorithms to sample over possi-
ble matchings of conformationally flexible ligands to the template. However, a drawback of
genetic algorithm approaches, including AutoDock, is the high computation time, especially
in comparison to fragment-based docking approaches.

When screening databases of more thah ddimpounds to identify potential ligands,
the computational efficiency of the search process becomes a significant concern. Dock-
ing a small flexible molecule with high accuracy takes at least several minutes on a desktop
workstation for the fastest of the recent algorithi$141°-21 Spending only one minute
to dock each molecule when screening a dataset of 100,000 compounds results in a com-
putation time on the order of two months, which is unacceptably slow, particularly when
improving and validating the method. Recent screening tools can identify potential ligands
from up to 150,000 compounds within a few days when ligand flexibility is modeféd®
however, none of these methods models protein conformational change upon ligand binding
(also callednduced complementarity

For a number of structurally characterized protein—ligand complexes, induced comple-
mentarity of protein side chains is known to be important for ligand birddinghus, for
the development of a new screening procedursTOPE our goal has been to model
protein side-chain flexibility as well as ligand flexibility when evaluating their interaction.
SpecITOPENarrows down the vast number of ligand candidates to several dozen molecules
with good shape and chemical complementarity to a protein ligand-binding site within 3
hours on a typical desktop workstatidn It is difficult to make direct comparisons between
the timing of S>EcITOPEand other screening algorithms, because the other methods assume
the protein is rigid, differ in their modeling of ligand flexibility, and some require man-
ual scoring (molecular graphics assessment by a structural biologist) outside the algorithm.
However, methods screening rigid ligands typically take several hours, whereas methods
modeling full ligand flexibility typically take several days, plus time spent for external scor-
ing.

SPECITOPES relative speed results from adapting distance geometry techifoses
also the paper by Havel in this volume) to perform quick feasibility checks on each ligand
based on comparing its interatomic distances and number of hydrogen-bond donors and ac-
ceptors with those in a template representing the binding site. We have shown that protein
and ligand side-chain flexibility can be modeled while screening a large database of peptide
structures for inhibitors to three diverse proteins, an aspartyl proteinase, a serine protease,
and a DNA repair enzynté This approach was successful in identifying the known pep-
tidyl inhibitors within the top five of 140,000 ligand candidates screened, and for two of the
three proteins, the known ligand received the top score, based on shape complementarity and
favorable hydrophobic and hydrogen-bond interactions with the protein. In each case, pro-
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Figure 2. Side-chain versus full flexibility in a peptid€or the same peptide shown in Figure 1, two repre-
sentations of peptide flexibility used by screening algorithms are shown: a model in which kiwba¢main

chain) is a rigid unit and the side chains are free to rotate, and a fully flexible model, where the backbone
and side-chain dihedral angles are free to rotate. Rigid bonds are shown as black tubes and flexible bonds as
grey tubes; in the full-flexibility model, rigithonds arise from the partial-double and double bonds inherentin

the structure. Black spheres indicate polar (nitrogen, oxygen) atoms to be compared with a hydrogen-bonding
template representing the ligand-binding site, whereas the black sphere in the ring center (top right) indicates a
hydrophabic ring center to be matched with hydrophobic centers in the template. Grey spheres indicate carbon
atoms.

tein side-chain motion was known to be important for ligand binding and was appropriately
modeled by $EciToPEduring docking.

Here we present and validate improvements RES TOPEto probe the ligand-binding
site more thoroughly; this approach will also enable screening of fully flexible ligands in the
near future. Geometric hashing techniques are employed so that the exhaustive checking of
different matchings of the ligand to the protein’s ligand-binding site is reduced to checking
only those matchings that are feasible, based on distance and chemistry indices stored for
the template in a look-up table. This provides time savings and linear scaleability, allowing
sampling over more template points within the binding site and modeling of full flexibility
for peptidyl and small organic ligand candidates. Hydrophobic interaction centers are now
considered, in addition to hydrogen-bonding centers, in the ligand and in the binding-site
template. Figure 2 compares the difference between peptidyl ligand flexibility, as previously
modeled by 8ECITOPE where side chains were flexible but main-chain dihedral angles were
held fixed, with the degree of flexibility that will be enabled by the hashing approach, where
both side-chain and main-chain dihedrals are rotatable (within the limitations imposed by
van der Waals contacts). Many organic compounds are not polymeric and thus do not have a
clear main chain/side chain distinction, though they often have rigid frameworks provided by
ring systems. To illustrate how the same concepts applied here to peptides can be applied to
more general organic compounds, a goal for our future ligand design work, Figure 3 shows
the interaction centers and flexible bonds for two compounds arbitrarily chosen from crystal-
lographic structures in the Cambridge Structural Database (http://www.ccdc.cam.ac.uk).

METHODS

SPEcCITOPEshares with other current docking and screening approaches the use of a
binding site template to limit the orientational search for each prospective ligand, and differs
in the use of distance geometry techniques to avoid the computationally intensive fitting of in-
feasible ligands into the binding site. The speed gained by distance geometry allows the sec-
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Figure 3. Flexibility in organic compoundsTwo compounds from the Cambridge Structural Database are
shown, indicating how the representation of rigid and flexible bonds and polar and hydrophobic (nonpolar)
atom centers carries from peptides to more general compounds (bonds and atoms colored as in previous figure).
Notice the similar degree of flexibility of the cqpuund at left to the fully flexible peptide (previous figure),
whereas the compound at right has significantly more rigid and hydrophobic clusters than are found in peptides.

ond advantage over other screening methods, modeling protein side-chain flexibility during
docking. Here we overview the algorithm and present the use of hashing techniques adapted
from fragment-based docking to allow sampling over more interaction sites as well as future
modeling of full ligand flexibility. We now include hydrophobic centers for template match-
ing, in addition to the hydrogen-bonding centers previously used. While hydrogen bonds
are important for providing specificity to most protein—ligand interactions, hydrophobic in-
teractions are especially significant for some organic ligands, and contribute favorably to the
binding free energy3°3! The main steps of &=CITOPE as described below, are: template
design; distance geometry and hashing steps for screening out geometrically infeasible lig-
and candidates and efficiently matching ligands to the template; rigid-body translations of
the ligand coupled with ligand and protein side-chain flexibility to resolve steric overlaps in
the complex; and ligand scoring based on interactions with the protein.

Template Design

For SPECITOPE the template consists of key interaction points (hydrogen-bond donors,
hydrogen-bond acceptors, and hydrophobic centers) where ligand atoms with matching char-
acter can make favorable interactions with the protein. Design of the template can be based
on observed interactions in the structure of a known ligand in complex with the protein; for
two of our recent applications, uracil-DNA glycosylase and cyclodextrin glycosyltransferase,
templates were based on the positions of polar atoms in the ligand that formed hydrogen
bonds to protein atoni® (see Figure 4). When structures are available for the protein in
complex with several different ligands, as for aspartyl proteinase, interactions shared by the
ligands can be used to develop a consensus template. When ligand-bound protein structures
are unavailable, templates can be based on the positions of crystallographically observed
water molecules bound in the ligand-binding site of the protein, representing favorable sites
for making hydrogen bonds to the prot&inthis approach was taken for screening subtil-
isin inhibitors’®. Template-design methods from other docking and screening approaches
(discussed in the Introduction) may also be employed.

In the prior version of 8ECITOPE the template was limited to about five interaction
points, due to the combinatorics of sampling every possible matching of five ligand atoms
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(A Hydrogen-Bond Acceptor Interaction Point

(D Hydrogen-Bond Donor Interaction Point

(H) Hydrophobic Interaction Point

Figure 4. Example of a binding site templat@he template is comprised of sites above the protein circled

in black and labeled as hydrophobic or hydrogen-bond interaction points. This template represents sites where
similarly-labeled ligand atoms can make favorable interactions with the protein (whose hydrogen-bond acceptor
and donor sites are indicated below by grey letters).

(out of a larger number, typically15 for five-residue peptides) onto five template points;
the computational complexity of this step is factorial, due to enumerating all permutations
(matchings) of the ligand atoms onto template points (see equation below). In the present
version, we avoid this complexity by considering 3-point subsets of larger (10 or more point)
templates and usingiangle hashingo evaluate only the geometrically feasible subsets of
these triangles. As seenin Table 1, the number of potential matchings of 3-point ligand atom
subsets onto a template wilhpoints scales linearly g8 increases, whereas the previously-
usedcomplete enumeratioim which all N-point subsets of the ligand are permuted onto the
T-point template, scales poorly in badhandT'. The scalingis linear in practice because the
number of feasible triangles in each bin in the hash table (see Distance Geometry, Hashing,
and Docking section below) has been found experimentally to scale linedrlyaffiectively
reducing the first term in the product below from the binomial coeffici€athoose, to

T.

# of ways of # of ways of # of ways of
# of potential | choosing choosing matching
( matchings ) ~ | Ntemplatepts | | Nligandpts | | N ligand ptsto
from T pts from L pts N template pts

B (N!(TTi N)!) ' (N!(LL—! N)!) ()

Matching triangles of ligand interaction centers onto triangular subsets of the template
makes sense for two other reasons. The previous matching of four or five interaction centers
in a ligand to the same number of template points in the binding site effectively rigidified
the ligand, since most bonds between those atoms in the ligand could not be rotated without



Table 1. Combinatorics of complete enumeration versus hashing approaches for mat¢tigand points to
T template points.

T N Number of Potential Matchings

5 5 360,360
Complete 10 5 90,810,720
Enumeration 10 3 327,600
20 3 3,112,200
5 3 13,650
Triangle 10 3 27,300
Hashing 20 3 54,600
50 3 136,500
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Figure 5. The rigid and flexible regions in a ligand, using triangle-based dockibgring the template match-

ing described below, every possible triangle of hydrogen-bonding and hydrophobic interaction points in the
ligand is matched to every possible triangle of template points; however, the hashing procedure focuses directly
on those matchings with feasible geometry and chemistry. The resulting triangle-based docking essentially
rigidifies the triangulaanchor fragmentsvhich may be small (as in the left panel) or large (right panel), while
maintaining the flexibility of the other parts of the ligand. Docking is based on matching the ligand triangle to
the template and adjusting the flexible parts of the ligand and/or protein to remove intra- or intermolecular van
der Waals collisions (overlaps between atoms). Themaailcdliding ligand dockings are scorextcording to

their hydrogen-bond and hydrophobic complementarity with the protein.

disrupting the template match. When, alternatively, all chemically and geometrically fea-
sible ligand triangles are tested for docking to the protein via hashing, much smaller rigid
fragments of the ligand are also tested (Figure 5). Furthermore, organic compounds, a major
future application, tend to have fewer hydrogen-bonding atoms than peptides and are more
chemically diverse. Thus, itis useful to be able to screen and dock these compounds based on
fewer interaction points (3, which still uniquely define an orientation with respect to the pro-
tein), include hydrophobic as well as hydrogen-bond interaction centers, and consider shape
complementarity as another major contributor to specificity. For compounds with more than

3 interaction points, each triangle can be docked independently, by optimizing the rotations
in the linkages between them. An interface to read organic compounds and identify their
flexible bonds, hydrophobic centers (interpreted as carbon-ring centers), and hydrogen-bond
donors and acceptors has been developed in our lab. This interface is based on the generic
mol2 molecular data file (of the Tripos Sybyl software) frequently used with other databases
and modeling tools, makingF&ciToPEportable and compatible with other systems.



Distance Geometry, Hashing, and Docking

SpeciToPEfirst uses simple distance geomeétriechniques to screen out ligands with
incompatible geometry relative to a template specifying the positions of hydrophobic and
hydrogen-bond interaction centers. Many of the ligand—template matchings can be ruled out
by distance geometry alone, based on the incompatibility between ligand interatomic dis-
tances and inter-template-point distances. Given a s€t(of this case, 3) ligand interaction
centers, a sorted list of th€ - (N — 1)/2 distances!;, between ligand interaction centers is
compared to the sorted ligt, of distances between thé template points. Witld; equal to
the difference between distandeandt;, the root-mean-square deviation between distances
in the two lists, is defined as:

RMSDyy = | ————— d;)?
list N(N—].) zzzlj (1)
The RM SDy;,, gives a measure for the compatibility of distances between the ligand atoms
and between points in the template. A more exact measure for their compatibility is the
distance matrix error:

z

-1 N
DME = Z
whereD;; = L;;—T;; is defined as the matrix of differences between matched distances in the
L andT matrices containing the distances between ligand interaction centers and distances
between template points, respectively. &/ S D,;,, can be proven to give a lower bound
for the DM E for any matching of the two sets. Hence, if tR&{ S D,;,, is above a given
threshold for the current set of interaction centers and template points, this set can be ruled
out, since théD M E for any one-to-one matching of these centers to the template points can
only exceed this value. An advantage of using 81 S D;;,; as a screening criterion before
the DM E check is that the factorial complexity of specifying one-to-one correspondences
between ligand and template points can be avoided for the majority of cases.

Aside from the major time savings from comparing intra-template and intra-ligand dis-
tances via sorted distance lists rather than by docking the molecules togetgenTSPE
screens out infeasible ligands by a series of quick, initial distance and chemistry checks:
Does the longest distance between interaction centers in the ligand significantly exceed the
longest distance in the template? If so, they cannot match. Are there enough hydrogen-
bond and hydrophobic interaction points in the ligand to match the template? If not, they do
not match. Overall, these distance geometry and chemistry checks, throubfitiiestep,
typically rule out 70% of the infeasible ligand candidates before the time-intensive docking
steps®,

Figure 6 compares the current, hashing-based strategy usedtlky1®pPEwith the steps
used in the previous complete-enumeration screéhifigne distance geometry and docking
(least-squares fit) steps remain the same, with the major difference being that triangles of
ligand interaction centers are matched by hashing to the triangles of template points. The
use of triangles, rather than more complex geometric objects, provides a convenient basis for
screening ligand—-template matches based on simple chemical and geometric characteristics
of the triangles. This is done in three stages of hashing, or indexing, and is extremely efficient
because a ligand triangle is only compared to template triangles with similar characteristics.
As shown in Figure 7, the hash table allows direct access to all template triangles having
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Figure 6. Comparison of the steps in hashing versus complete enumeration screening of lig&ré<sbyoPE

the same number and type of interaction points as the ligand triangle (e.g., one hydrogen-
bond acceptor and two donors, or ADD), a similar perimeter, and a similar length for the
longest triangle side. The distance geometry and hashing steps ensure that the relatively
time-intensiveD M E and docking (least-squares fit) calculations are only done for feasible
template triangles. Th&M SD,;,, and DM E are then calculated for each matching of
triangles, using a cutoff of 0., reflecting a much closer match than could be required

for matching a larger number of points. This close match to the template also preserves
the possibility of hydrogen bonding and was found to retain known ligands during screening.
Docking involves taking the minimalk A E matching between the current ligand interaction
centers and the template, then transforming the ligand into the protein’s ligand-binding site
based on a least-squares fit of these matched points. If the root-mean-square deviation of this
transformation is below a fixed threshold (033’, the entire ligand is transformed into the
ligand-binding site.

Van der Waals Collisions and Flexibility

This ligand transformation into the protein’s ligand-binding site results in a close fit of
the ligand interaction points with the template, but also may result in van der Waals colli-
sions between ligand and protein atoms. Because of the flexibility of the protein and ligand,
many such collisions are ultimately resolvable. In its current incarnation, halfway to full lig-
and flexibility, SPEciToPEemploys triangle hashing for matching the ligand and template,
while modeling the peptidyl ligand backbone as rigid and the ligand and protein side chains
as flexible. The following discussion also covers the more general case in which the ligand
backbone is flexible, which triangle hashing will make possible. If the collisions are between
the rigid part of the ligand (backbone or anchor fragment) and the rigid backbone of the pro-
tein, the minimal translation vector for resolving these collisions is calculated, and the ligand
Is translated accordingly. If new rigid-body collisions result, this procedure is iterated up to
100 times, effectively shaking the ligand inside the ligand-binding site. If these collisions
cannot be resolved, this ligand matching to the template is discarded. When the collisions
can be resolved, then van der Waals overlaps involving flexible parts of the ligand and the
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Ligand Triangle Triangles within
5.3A A the Protein Template
3.5A
5.8R

DDD <6.0A <3.0A
ADD 6.0-7.0A 3.0-3.5A
Interaction AAD 16.8A . .
AAA . .
Types ool Triangle 15.0-16.04 6 7A 6.0-6.5A
ADH Perimeter 16.0-17.0A] | 6.5-7.0A
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: 29.0-30.0A | H 1451508 | H
[T >30A >15.0A H
1st Hash Table 2nd Hash Table 3rd Hash Table

Figure 7. Three-stage hashing applied to ligand—template matchitaghing enables direct accessto those sets

of template triangles (shown at top center, with length and interaction-type data precomputed and exhaustively
listed in a table) that match a given set of three ligand points (upper left). The index into the first table is
based on the interaction types of the ligand atoms (in this case, two hydrogen-bond donors and one acceptor),
which points to the subset of template triangles with the same label (ADD). The second index, the perimeter
of the ligand triangle, locates those template triangles that are labeled ADD and have a similar perimeter. The
third index, the length of the longest side of the triangle, points to those ADD template triangles with similar
perimeter and longest side. This results in more efficient, tileghaustive, checking of ligad—template
matches.

protein are addressed.

Each flexible part in the ligand is checked for overlaps with protein atoms, which are
cleared by rotating this part of the ligand through the minimal angle that resolves the overlaps.
The single bond closest to the colliding atoms in the ligand is used first to resolve the overlap.
If a collision-free conformation cannot be generated with this rotation, the next rotatable bond
closer to the rigid part of the ligand is rotated. When it is not possible to resolve an overlap
by rotations within the ligand, the same approach is applied to the protein side chain involved
in the collision. If an intermolecular collision remains, despite testing all protein side-chain
and ligand single-bond rotations, this ligand matching to the template is deemed too close
and rejected. For ligand matchings in which all intermolecular overlaps have been resolved,
both molecules are checked for intramolecular collisions. If a rotation has caused an internal
clash, then the flexible group is rotated back to its original conformation, and the next single
bond closer to the backbone or anchor fragment is rotated. This procedure is followed by
rechecking for inter- and intramolecular collisions, until either a collision-free conformation
is found, or all possibilities have been exhausted and this ligand matching is excluded. The
aim of this step in 8ECITOPEIs not to predict the optimal ligand conformation, but to ensure
that a collision-free conformation of the molecules exists for this matching.

Scoring

A scoring function is then used to rank the relative complementarity c£@@0 ligand
candidates (passing the previous screening steps) to the protein’s ligand-binding site. Be-
cause the conformation and orientation of each ligand candidate could likely be optimized
by fine docking, scoring is mainly intended to recognize molecules that lack chemical com-
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plementarity to the protein and to emphasize molecules that fit well in the given binding
mode. The scoring function weighs the dominant factors, the number of hydrogen bonds
between the protein and ligand and their hydrophobic complementarity. For hydrogen-bond
donors and acceptors separated by 2.8 toA3.SPEciToPECOMputes the optimal position

of the shared hydrogen atom (because most X-ray structures do not provide hydrogen atom
positions) to identify intermolecular hydrogen bonds with good geometry. The hydropho-
bicity measure is based on a statistical survey of atomic hydration in 56 protein strdétures
and compares the hydrophobicity value of each ligand atom to the average hydrophobicity
value of nearby protein atoms. The overall complementarity of the protein-ligand complex,
SCORE (protein,ligand), is given by a weighted sum of the number of hydrogen bonds and
the hydrophobic complementarity:

SCORE(protein, ligand) = A - HBONDS(protein, ligand) + B - HPHOB(protein, ligand)

Based on the functions of@im** and Jaif®, a ratio of 1:1.2 is assumed for the relative
contributions of the hydrogen bond and hydrophobic interaction terms to the overall stability
of the protein-ligand complex, with the weights A and B tuned accordingly, based on the
values of HBOND and HPHOB from 30 structures of protein complexes with small peptidy!l
ligands® from the Protein Data Bank (PDE) These structures have 6.3 hydrogen bonds
between protein and ligand, on average.

RESULTS

Given the new implementation of triangle hashing, our goal here is to assess whether
hashing identifies ligands with similar or better protein complementarity relative to those
identified by complete enumeration.

Screening for Aspartic Proteinase Ligands

To compare ligands from the hashing and complete enumeration approaebes, & E
was used to screen for peptidyl ligands of rhizopuspepsin, an aspartic proteinase. Rhizopus-
pepsinis arelative of medically important inhibitor design targets including renin, which reg-
ulates blood pressure, and HIV protease, which is essential to the virus life cycle and a major
target for AIDS drug desigt. The template for rhizopuspepsin was designed by superim-
posing three complexes of this protein with pepstatin (PDB structure 6apr) or pepstatin-like
renin inhibitors (4apr, 5apr) onto the ligand-free structure of rhizopuspepsin (2apr). Figure 8
shows the structure of rhizopuspepsin bound to a known peptidyl ligand.

For complete enumeration screening, the average positions of four hydrogen-bond donors
and one acceptor in the three inhibitors were selected as the template points. For hashing,
9 such template points were chosen, and the characteristics of each 3-point subset of these
template points were listed in the hashing tables (see Figure 7). In both cases, all 5-residue
peptides were screened from 140,000 peptides occurring in known protein structures with
low similarity (<25% sequence identit$p.

Complete enumeration identified 117 possible peptidyl ligands for rhizopuspepsin in 96
minutes on a desktop workstation (Sun SPARC Ultra 140), whereas hashing identified 357
possible ligands in 75 minutes. For this case, the 10-fold or more computational savings
possible from hashing were not realized because more peptides passed the distance geometry
steps; however, for another protein tested, human uracil-DNA glycosylase, screening was 3
times as fast. More importantly, the peptidyl ligands identified by hashing tended to have
higher complementarity to the protein than the ligands identified by complete enumeration
(Table 2). The feasible ligands from triangle hashing had an average complementarity score



Figure 8. Rhizopuspepsin in complex with a peptidyl ligaiitie rhizopuspepsin backbone is shown as a grey
ribbon, with its ligand-binding site forming the vertical cleft at center. Bound in this site is the known peptidyl
ligand, FHFFV, shown in black tubes. The crystallographic structure of the protein-ligand complex is from
PDB entry 3apr.

of 1369.8 and an average number of 3.5 hydrogen bonds between protein and ligand, whereas
complete enumeration resulted in ligands with an average score of 816.8 and an average of
2.2 protein-ligand hydrogen bonds. The top-five ligands found by hashing had scores 200-
300 points higher and typically had one more hydrogen bond than those found by complete
enumeration. In both cases, a known rhizopuspepsin ligand, the peptide with amino-acid
sequence FHFFV (PheHisPhePheVal), was identified as the top-scoring ligand, with similar
scores for complete enumeration and hashing; this reflects similar dockings despite the dif-
ferent number of ligand atoms matched to template points, 5 for complete enumeration and
3 for hashing. The docking based on hashing also resulted in a very similar ligand-binding
mode to that observed in the crystallographic structure of the rhizopuspepsin-peptide com-
plex (Figure 9). The backbones of the ligand from the crystal structure and as docked by
SpeciToPE(backbones running horizontally in Figure 9) are essentially superimposed, with
some side-chain reorientation (in the rings at top).

CONCLUSIONS AND FUTURE DIRECTIONS

Triangle-based hashing has been implemented in our ligand screening algomthor, S

TOPE, and provided time savings in ruling out infeasible ligand candidates, as well as more
thoroughly sampling the ligand binding site. Screening for rhizopuspepsin ligands showed
a 28% speed increase using hashing as compared with the previous complete enumeration
approach, while finding ligands with higher complementarity to the protein. Our goal, near-
ing completion, is to screen fully flexible peptidyl and small organic ligands against proteins
with side-chain flexibility. Hashing enables this by sampling over all possible rigid frag-
ments of ligands during screening and docking. Recent construction of a structural database



Table 2. Summary of the top-five rhizopuspepsin ligands identifiesH®cI ToOPEUSINg complete enumeration

and triangle hashing.

Complete Enumeration (5 template points)

Triangle Hashing (9 template points)

Rank Sequence H-Bonds Score Rank Sequence H-Bonds Score
1 FHFFV 5 3178.8 1 FHFFV 5 3324.1
2 KTVTD 2 3150.6 2 YYTAL 4 3280.3
3 ETTSF 2 3067.2 3 NLKFG 3 2982.4
4 LWCNG 3 2573.0 4 LYIDS 3 2797.8
5 YGLSV 3 2385.0 5 GYYTA 4 2770.4
Average 2.2 816.8 Average 1369.8
=17 S e, 1.5 769.2 17357 std.pev. 1.2 509.7

Figure 9. Close-up view of the known ligand-binding mode for rhizopuspepsin and that predicted by
SpeciToPEbased on triangle hashingThe protein backbone is shown in grey ribbons, with the peptidyl
ligand FHFFV, from its crystal structure in complex with the protein (PDB 3apr), shown in black tubes. The
similar binding mode for this peptide predicted byex1ToPEIS shown in grey tubes, and the template points
(to which triangles were matched) are shown as grey spheres.

14



interface to $ECITOPE including flexible and rigid bond information as well as hydrogen-
bond donors and acceptors and hydrophobic interaction sites for each ligand candidate, will
facilitate screening of organic compounds as well as peptides. Ultimately, we anticipate a
merging of the capabilities offEciToPEand FIRST, which can predict regions of protein
backbone flexibility (see companion paper by Jacobs, Kuhn, and Thorpe), to model the inter-
actions between fully-flexible ligandsd fully-flexible proteins. This problem of modeling

the induced shape complementarity between proteins and ligands upon binding remains one
of the most difficult and important problems in structural biology.
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