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1Protein Structural Analysis Water-mediated ligand interactions are essential to biological processes,
and Design Laboratory from product displacement in thymidylate synthase to DNA recognition

by Trp repressor, yet the structural chemistry influencing whether boundDepartment of Biochemistry
water is displaced or participates in ligand binding is not well2Genetic Algorithms Research

and Applications Group characterized. Consolv, employing a hybrid k-nearest-neighbors classifier/
genetic algorithm, predicts bound water molecules conserved between freeDepartment of Computer
and ligand-bound protein structures by examining the environment ofScience and 3Case Center for
each water molecule in the free structure. Four environmental features areComputer-Aided Engineering

and Manufacturing used: the water molecule’s crystallographic temperature factor, the
Michigan State University number of hydrogen bonds between the water molecule and protein, and

the density and hydrophilicity of neighboring protein atoms. After trainingEast Lansing, MI 48824
on 13 non-homologous proteins, Consolv predicted the conservation ofUSA
active-site water molecules upon ligand binding with 75% accuracy
(Matthews coefficient Cm = 0.41) for seven new proteins. Mispredictions
typically involved water molecules predicted to be conserved that were
displaced by a polar ligand atom, indicating that Consolv correctly assesses
polar binding sites; 90% accuracy (Cm = 0.78) was achieved for predicting
conserved active-site water or polar ligand atom binding. Consolv thus
provides an accurate means for optimizing ligand design by identifying
sites favored to be occupied by either a mediating water molecule or a
polar ligand atom, as well as water molecules likely to be displaced by the
ligand. Accuracy for predicting first-shell water conservation between
independently determined structures was 61% (Cm=0.23). The ability to
predict water-mediated and polar interactions from the free protein
structure indicates the surprising extent to which the conservation or
displacement of active-site bound water is independent of the ligand, and
shows that the protein micro-environment of each water molecule is the
dominant influence.
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Introduction

Functional roles of bound water

It is increasingly recognized that water plays an
important role in protein structure and function, yet

the prediction of conserved protein-water inter-
actions has remained elusive. In addition to bulk
solvent, which is crucial to the hydrophobic effect
and protein folding (Edsall & McKenzie, 1983;
Tanford, 1980; Kuntz & Kauzmann, 1974), specific
protein-bound water molecules have been shown to
be important for substrate recognition in numerous
protein structures. For example, examination of the
crystal structure of the Trp repressor complex
illustrates that the base-specific binding of operator
DNA is achieved by a number of water-mediated
hydrogen bonds between DNA bases and the
protein (Joachimiak et al., 1994; Otwinowski et al.,

Abbreviations used: MHC I, class I major
histocompatibility complex; PDB, Brookhaven Protein
Data Bank; knn, k-nearest neighbors classifier; GA,
genetic algorithm; adn, atomic density; ahp, atomic
hydrophilicity; bval, temperature factor; hbd, number
of hydrogen bonds; RMSD, root-mean-square
positional deviation; bbknn, branch and bound k-
nearest-neighbors classifier; PEG, polyethylene glycol.
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1988). In contrast, crystallographic structures for
the class I human major histocompatibility complex
(MHC I) with several peptidyl ligands (Wilson &
Fremont, 1993) reveal that water can also allow
plasticity in molecular recognition. In these
structures, MHC I binds peptides of widely
different side-chain chemistry using water-medi-
ated contacts to bridge gaps between the protein
and ligand. For thymidylate synthase, the crystal
structure shows that a water molecule bound to
absolutely conserved Tyr146 allows the enzyme to
discriminate between substrate and product
nucleotides (Fauman et al., 1994). The ubiquity of
water-mediated ligand binding is reflected in a
study of 20 non-homologous protein complexes,
primarily with small ligands: the average protein–
ligand interface includes 10 water molecules and 17
water-mediated bridges between protein and
ligand (A. Cayemberg & L. A. Kuhn, unpublished
results).

Bound water molecules also contribute to
structural stability by forming extensive hydrogen-
bond networks (Baker & Hubbard, 1984) and by
lining grooves on solvent-exposed protein surfaces
(Kuhn et al., 1992). Structures of proteins solved
from crystals repeatedly rinsed in anhydrous
organic solvent maintain the majority of their
bound water molecules (Fitzpatrick et al., 1993;
Travis, 1993), indicating that water is an integral
part of the protein surface. Consideration of the
structural and functional roles of bound water
molecules has contributed to better drug design.
For example, based on the knowledge that a specific
water molecule (Wat301) is conserved in several
X-ray structures of HIV-1 protease (Wlodawer et al.,
1989), a higher-affinity cyclic urea inhibitor was
obtained by incorporating a carbonyl oxygen to
displace Wat301 and form the same network of
hydrogen bonds (Lam et al., 1994).

When a ligand binds to a protein, each water
molecule in the binding site will either be displaced
by the ligand or remain bound, in both cases
influencing the shape and energetics of interaction.
Water molecules conserved in the ligand-bound
structure generally participate in water-mediated
hydrogen bonds between the protein and the
ligand. The goal of Consolv is to examine
the ligand-free protein structure and predict the
conserved or displaced status of its water molecules
upon ligand binding. For this purpose, bound
water is defined as those crystallographically
resolved water molecules in direct contact with the
protein surface, using the criterion that the center
of the water oxygen atom is within 3.6 Å of a
protein atom center. Consolv’s training and vali-
dation is for proteins without significant confor-
mational change upon ligand binding. This is
primarily because there are not enough known
ligand-bound and free structural pairs for vali-
dation on proteins with conformational change
upon ligand binding, and secondarily because it is
difficult to define conserved sites between different
conformational states. While ligand hydration

(bound water) is likely to influence or contribute to
water-mediated interactions, information on lig-
and-bound water is not included in Consolv for two
reasons. First, a major application for the prediction
of conserved or displaced active-site water is the
design and optimization of protein inhibitors as
drug candidates, and for this application the
structures of the ligand and the protein–ligand
complex are either unknown or subject to change.
Secondly, for most protein complexes, the three-di-
mensional structure is not available for the free
ligand, so the sites of ligand hydration are
unknown. Therefore, neither the structure of the
ligand nor of the protein–ligand complex is
required for Consolv’s decision procedure, and
Consolv’s accuracy indicates that active-site water
conservation is reasonably ligand-independent.

Conservation of bound water under different
crystallization conditions

Several studies have shown that many bound
water sites are conserved for structures of a protein
solved in different space groups, at different pH, in
different salt concentrations, and even in different
solvents. For instance, three structures of thermi-
tase in complex with eglin-c and one without ligand
were solved in the same space group from a range
of crystallization conditions: pH 5.2 to 6.0,
precipitants 5% to 25% PEG (polyethylene glycol)
or 25% saturated ammonium sulfate, buffers 58 to
100 mM sodium acetate, 50 mM Bis-Tris, or 50 mM
morpholinethane sulfonic acid, and calcium con-
centrations ranging from 0 to 100 mM. Superposi-
tion of these structures (Gros et al., 1992) shows that
18 water molecules are absolutely conserved in all
four of the structures, and 38 are conserved in three
of the four structures; for the three complexes with
eglin-c, eight of the eleven active-site waters are
always replaced by eglin-c, and three are always
conserved. Structures of T4 lysozyme in seven
space groups have been solved by one research
group, with pH ranging from 6.1 to 8.5, salt
concentrations of 0.1 to 2.2 M phosphate or
00.25 M sodium acetate, alcohol concentrations
from 0 to 5%, and 0 to 30% PEG. For the resulting
18 crystallographically independent lysozyme
molecules, each with 38 to 141 bound water
molecules, 50 to 60% of water sites are conserved;
23 water sites are found in at least nine of
the eighteen structures (Zhang & Matthews,
1994). The 20 most frequently observed water sites
are found in 62% of the structures, on average,
replaced by another polar atom in an additional 3%
of the structures, and displaced by a crystal contact
in 14% of the structures. Zhang & Matthews
consider this to be an underestimate of water
conservation, because steric interference in the
crystal lattice displaces some water sites which
otherwise would be conserved, and because
crystallographers tend to assign only water sites
having high occupancy. A study of consensus
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hydration sites in six complexes of FKBP12 with
drug molecules shows that 60 of the 134 water
binding sites are at least 50% conserved in the eight
crystallographically independent structures, and 32
sites are conserved in at least three-quarters of the
structures (Faerman & Karplus, 1995). In perhaps
the most extreme change in crystallization con-
ditions, the structure of subtilisin Carlsberg has
been solved in an organic solvent, anhydrous
acetonitrile, and compared with the structure
solved in an aqueous environment (Fitzpatrick
et al., 1993). Of the 119 bound water sites observed
in the aqueous structure, 99 are conserved in the
acetonitrile structure. Of the 12 subtilisin-bound
acetonitrile molecules, four displace water mol-
ecules and four bind in the active site where eglin-c
binds. Together, these studies show that one-half or
more of bound water sites are typically conserved
in independent structures of a protein solved under
diverse conditions.

Solvent modeling and prediction

Theoretical approaches to solvent modeling have
provided foundations for water refinement in
crystallography (Jiang & Brünger, 1994; Badger,
1993) and for energy minimization approaches to
solvent site prediction (Goodfellow & Vovelle,
1989; Wade et al., 1993; Zhang & Hermans, 1996).
These methods employ potential functions and
analysis of electron density to determine likely
water binding sites for a protein structure. In
contrast, empirical methods employ a database of
information about known protein structures to
make comparative predictions about water mol-
ecules in new structures. Examples are a neural
network water site predictor based on residue
chemistry and secondary structure (Wade et al.,
1992); a method based on hydrogen-bond stereo-
chemistry (Roe & Teeter, 1993); the Auto-Sol
program based on hydrogen-bond directionality
(Vedani & Huhta, 1991); and the Aquarius2 method
based on experimentally observed electron density
and the distribution of water around protein
residues (Pitt et al., 1993). The best methods achieve

a predictive accuracy of 63 to 66% at protein
surfaces, but are either restricted in applicability to
polar residues only, or tend to overpredict
hydration. Empirical methods, including the Con-
solv application presented here, are dependent on
the quality of data included in the knowledge base,
and thus can be subject to limitations in water
fitting and refinement (Karplus & Faerman, 1994).
Assignment of consensus water sites from superpo-
sition of independently solved X-ray structures
(Faerman & Karplus, 1995) is a means of
minimizing crystallographic artefacts in water
structure. Consolv approaches this problem by
training on water sites from a number of
independently solved, non-homologous protein
structures, and is the first empirical method
developed to predict conservation of active-site
water molecules upon ligand binding.

Algorithms

The Consolv knowledge base

The first step in the development of Consolv was
the selection of protein structures to serve as a
knowledge base for the decision process. The
Brookhaven Protein Data Bank (PDB; Abola et al.,
1987; Bernstein et al., 1977) was screened for
proteins with independently solved ligand-bound
and free structures; structures with a resolution
E2.0 Å were preferred. To avoid statistical bias
from inclusion of redundant information, molecu-
lar graphics screening and Hera hydrogen-bond
diagrams (Hutchinson & Thornton, 1990) were
used to cull structurally related proteins from the
knowledge base. To exclude structures with
conformational and chemical differences between
the ligand-bound and free structures that could
affect conservation of bound water (hydration), we
included only those pairs with no sequence
variations, mutations, or significant backbone
conformational changes near the active site, and
low main-chain root-mean-square positional devi-
ation (RMSD E 1.0 Å) upon superposition of the
ligand-bound and free structures using InsightII

Figure 1. Stereo view of a di-water bridge linking barnase (thick tubes at left) with its tetranucleotide ligand (thin
tubes at right) in PDB structure 1brn. The bridging water molecules are indicated by dark spheres, and hydrogen bonds
(each E3.6 Å) spanning the bridge are shown by thin lines. This figure was rendered using InsightII (Molecular
Simulations, Inc., San Diego, CA).
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Figure 2. Scaling of knn feature
axes. Increasing the scale of the
x-axis (B-value) takes advantage of
the relatively greater discrimination
ability of B-value relative to atomic
density (y-axis, not rescaled) in
distinguishing conserved from dis-
placed water molecules. Scaling the
B-value axis between (a) and (b),
using a weight selected by the
genetic algorithm, can change the
predicted status for a test water
(shown here to change from dis-
placed to conserved status). Upon
axis scaling, the radius of the circle
representing the neighborhood in
the knn algorithm changes as
needed to encompass exactly k
neighbors.

software (Molecular Simulations, Inc., San Diego,
CA). For all analyses, the active site was defined as
the intersection of a 3.6 Å envelope around the
protein and a similar envelope about the ligand;
the active site of the free protein structure was
identified through structural superposition with the
ligand-bound form. The initial protein set, com-
piled according to the above criteria, consisted of 13
structural pairs (Table 1), representing a number of
distinct structures with a variety of biological
functions. These proteins bind diverse ligands,
including lipids, small organic molecules, peptides,
and DNA oligomers.

The primary knowledge base for Consolv,
consisting of first hydration shell and active-site
water molecules and measurements of their protein
environments, was compiled from this initial set of
13 structural pairs. Water molecules within 3.6 Å of
protein surface atoms, thus capable of making van
der Waals’ contacts or hydrogen bonds to atoms in
the protein, were considered to be first-shell waters.
(This and other distance criteria are from atom
center to atom center.) The 3.6 Å threshold also
includes the major peak in the radial distribution
function of protein-associated water (Kuhn et al.,
1995). Active-site water molecules, identified
above, included all water molecules potentially
participating in protein-ligand interactions. Water
bridges between protein and ligand sometimes
involved a single water molecule, and in other cases
involved two water molecules, comprising a
‘‘di-water bridge’’ (Figure 1) of the form: (protein
atom)–(water molecule)–(water molecule)–(ligand
atom), where each indicated interaction is a
hydrogen bond of E3.6 Å. Therefore, each water

molecule within 3.6 Å of both the protein and the
ligand was considered an active-site water, and
waters possibly participating in di-water bridges
were identified by including all other water
molecules within 3.6 Å of a first-shell active-site
water. To maintain computational tractability, 1700
first-shell water molecules, including both active-
site and non-active-site waters, were selected from
the 13 ligand-free structures and included in the
knowledge base. This knowledge base included all

Figure 3. The two-point crossover operation combines
two parent weight sets to form two new sets by
interchanging weights occurring between the crossover
points.



Predicting Water-Mediated and Polar Interactions 449

850 waters determined to be displaced in the
corresponding ligand-bound structures, and a
randomly-selected set of 850 waters determined to
be conserved. The overlapping set of 157 active-site
water molecules was used for training Consolv to
optimize prediction on active-site waters.

The next step in development of the knowledge
base was determination of the conserved or
displaced status of each of its water molecules. For
each protein, the main chain of the ligand-bound
structure was superimposed onto that of the free
structure using InsightII software. A computer
program was written to identify equivalent water
sites in the free and ligand-bound protein
structures by using each water molecule in the free
structure as a reference site, superimposing the
ligand-bound structure, and identifying any water
molecules in the ligand-bound structure with their
oxygen atoms within 1.2 Å (Zhang & Matthews,
1994) of the reference water oxygen from the free
structure. Given that the effective radius of a water
molecule including hydrogen atoms is 1.4 to 1.6 Å,
if two water sites have oxygen atoms 1.4 to 1.6 Å
apart, they will contact each other. Thus, a 1.2 Å
distance between oxygen atoms in two waters
results in considerable overlap and provides a
conservative criterion for defining equivalent water
sites in the superimposed structures. It would be
unexpected to find two water sites in the complex
that superimpose to within 1.2 Å of a water in the
free protein (this would imply that the two waters
from the complex were at most 2.4 Å apart, too
close for hydrogen bonding; Faerman & Karplus,
1995); however, in such cases, the closer of the two
was considered to correspond to the water site in
the free structure, while the more distant water
molecule was left for possible assignment to
another water from the free structure. Using this
approach, the water molecules in the knowledge
base (each from a ligand-free structure) were
identified as conserved or displaced in the
corresponding ligand-bound structure.

Measurement of bound water environment

Four features were selected to represent the
microenvironment of each water molecule in the
knowledge base and serve as a basis for prediction
of conserved water sites. The first feature was
atomic density, defined as the number of protein
atoms within 3.6 Å of the water molecule,
providing a measure of protein surface topography.
Deep grooves in the protein surface have higher
atomic density values than convex protein surfaces,
and water binding is twice as frequent in protein
grooves as on flat or protruding surface regions
(Kuhn et al., 1992). The next feature, atomic
hydrophilicity, measures the tendency of surround-
ing atoms to bind water molecules, based on a
study of the frequency of hydration for each atom
type in 56 high-resolution protein structures (Kuhn
et al., 1995). For each water molecule, the atomic
hydrophilicity values of all protein atoms and

water molecules within 3.6 Å were summed and
stored in the knowledge base. The third environ-
mental feature was the number of hydrogen bonds
between the water molecule and protein atoms,
evaluated using the program Hbond (Overington
et al., 1990), which identifies hydrogen bonds based
on the occurrence of donor and acceptor atoms
within 3.5 Å. The hydrogen-bonding capacity of
protein atoms correlates highly with the frequency
of hydration (Baker & Hubbard, 1984; Kuhn et al.,
1995). The fourth environmental feature was the
crystallographic temperature factor (B-value,
measured in Å2), as reported in the PDB entry for
the protein, which provides a measure of thermal
mobility of the water molecule, as well as local
disorder in the crystal lattice. While B-values may
be imprecise and refinement dependent, they
provide a relative indication of atoms’ thermal
mobility that reflects the tendency of a water site to
be conserved between structures (Karplus &
Faerman, 1994).

Taken together, these features provided a
characterization of the micro-environment of each
water molecule incorporating three features known
to correlate with water binding: atomic density,
number of hydrogen bonds, and temperature
factor. The fourth feature, atomic hydrophilicity, is
highly correlated with atomic density and hydro-
gen bonding and was included because it might
provide predictive ability equivalent to these two
other features, allowing a reduction in the number
of features used for classification. Other features
were not assessed; some which may also be useful
for water site evaluation are described in the section
on Consolv enhancements. The feature characteriz-
ation described above serves as the basis for
comparing the environments of known conserved
or displaced water molecules with the environ-
ments of test water sites being evaluated for their
likelihood of conservation.

The Consolv method

Consolv’s decision procedure uses a previously
developed algorithm coupling a k-nearest-neigh-
bors classifier (knn) with a genetic algorithm
(Punch et al., 1993). To apply the knn classifier to
predict conserved water sites, the four features in
the knowledge base (atomic density, atomic
hydrophilicity, number of hydrogen bonds, and
temperature factor) were used as the axes in
four-dimensional space. Each knowledge-base
water had known conserved or displaced status,
and was plotted in this four-dimensional space
based on its value for each feature. Finally, a test
water molecule of unknown status was plotted
among these knowledge base waters based on its
four feature values, and in our implementation, the
k nearest neighbors (for some small, positive integer
k) from the knowledge base voted to predict the
category of the test water. If a majority of the voting
waters belonged to the conserved water category,
the knn predicted that the unknown water was also
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Figure 4. Training of Consolv for
active-site water prediction. Feature
weight sets are passed to the
evaluation module, where they are
used to classify the test waters (for
which the conserved or displaced
status is known). Anti-fitness, based
on the number of incorrect votes
and incorrect predictions on these
test waters, is returned to the GA to
aid in selection of weight sets for the
next knn evaluation. 100 or more
such cycles (generations) are exe-
cuted in a training session, itera-
tively improving the weight set for
optimally categorizing the test
waters. The population typically
consists of 200 to 500 weight sets
tested by the knn in each gener-
ation.

a conserved water molecule. Odd values of k are
typically used when there are an even number of
categories (as in our case, conserved/displaced), to
avoid the possibility of a tie.

Knn techniques are commonly employed for
analyzing data sets which cannot be assumed to
follow a normal distribution, and have been
applied to protein secondary structure prediction
(Yi & Lander, 1993; Salamov & Solovyev, 1995).
Despite their utility, pure knn classifiers are
susceptible to noisy input data, outliers, and
spurious or correlated selection features. Fortu-
nately, the knn can be tuned to overcome these
limitations. One method for increasing its power
and robustness is by weighting the feature axes
according to their relative importance (Kelly &
Davis, 1991; Siedlecki & Sklansky, 1989; Punch
et al., 1993). For example, if it is known in advance
that one feature (e.g. temperature factor) is more
relevant to water site conservation than the others,
the scale of the axis associated with this feature can
be increased to heighten the ability of the knn
algorithm to discriminate between water categories
along this axis (Figure 2). Utilization of such a
weighted knn presupposes that there is some a
priori knowledge of the relative contribution of each
feature. In the case of conserved water site
prediction, no such information is available. In fact,
a deeper understanding of the factors which
contribute to conservation of water sites between
structures is an important objective. Consolv, which
combines this weighted knn with a genetic
algorithm for testing different axis weights, was
used to optimize the prediction of conserved water
sites. The genetic algorithm’s task was to find the
set of axis weights that allowed the weighted knn
algorithm to achieve improved prediction rates
using a given knowledge base. These weights could

then be applied using the fast knn algorithm,
without the genetic algorithm, for predicting the
status of water molecules.

Genetic algorithms (GAs) are learning pro-
cedures modeled after the mechanics of Darwinian
natural selection and evolution (Goldberg, 1989;
Holland, 1975). Their ability to solve deceptive,
multimodal, high-dimensionality problems has
proven GAs to be effective problem solvers in many
areas of biochemistry, including protein confor-
mation and folding (Patton et al., 1995; Dandekar &
Argos, 1994; Unger & Moult, 1993; Le Grand &
Merz Jr, 1994; Ring & Cohen, 1994), structural
alignment and comparison (May & Johnson, 1994),
evolution of receptor models (Walters & Hinds,
1994), and ligand docking (Jones et al., 1995; Oshiro
et al., 1995). A distinguishing feature of a GA is
maintenance of a large population of potential
solutions, each in competition with the others. The
initial population is simply a randomly generated
sample of possible solutions. These potential
solutions are referred to as individuals, and
represented as a string of characters, or chromo-
some. Each generation, the individual solutions are
rated by a function measuring their fitness, or how
well they solve the problem (in this case, prediction
of conserved water sites). Highly fit individuals are
more likely to be selected for inclusion in the next
generation, while individuals with low fitness have
a small, but non-zero, chance of being selected. The
selected individuals may then be modified by one
or more genetic operators before advancing to the
next generation. Typically, after a number of
generations, the individuals in the population will
begin to converge towards a single, near-optimal
solution.

The genetic operators employed are crossover
and mutation. As in biology, crossover combines
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the ‘‘genetic material’’ of two parents to create
offspring. In GAs, a crossover consists of a simple
substring swap between two chromosomes (Fig-
ure 3) and results in two recombinant offspring. In
our application, each chromosome consisted of four
contiguous real numbers (each represented by 32
bits), which were used as feature weights in the knn
algorithm. Crossover allows the GA to learn by
recombining parts of high-quality solutions
(chromosomes) to produce possibly better solutions
(Goldberg, 1989). A mutation involves making a
random change to a chromosome. At its most basic
level, information in a genetic algorithm (in our
case, a set of feature weights) is represented as a
string of binary digits, and the mutation operator
selects a random binary digit of the chromosome
and inverts it (0 to 1, or 1 to 0). The result of such
a ‘‘point mutation’’ is a random change in one of the
four feature weights. Since the crossover operator is
not constrained to cut the chromosome along the
weight boundaries, crossover can split a single axis
weight among two offspring, effectively causing a
mutation to each of the resulting chromosomes.
After selection, crossover, and mutation at the
beginning of each generation, the feature weights
from each individual in the new population are
used to scale the axes of the knn classifier.

Crossover is the primary learning mechanism of
the GA, while mutation maintains population
diversity and prevents convergence to local optima.
Through manipulation of the rates of crossover and
mutation, GA behavior can be balanced between
rapid search and broad coverage of the search
space. In our experiments, the probability of
crossover was set to a value between 0.6 and 0.8
crossovers per individual per generation, and
mutation rates between 0.01 and 0.0001 mutations
per bit were tested.

Consolv’s fitness function

In designing a function to compute the fitness of
each weight set, the function should be as smooth
as possible to facilitate effective search by the GA.
If fitness were based only on the number of
correctly classified test water sites, the function
would increment in discrete steps for each correctly
predicted water, and between these discrete steps
there would be no guidance to the GA on how the
weights should be modified to increase the number
of correct predictions. However, increasing the
number of correct knn votes for the status of each
water molecule would eventually increase the
number of correct predictions, so including a

Table 1. Non-homologous crystallographic structural pairs (ligand-bound and free) selected for the Consolv knowledge
base

First-shell Active-site
PDB water water Resolution RMSDa

Protein Code Source molecules molecules (Å) R-factor (Å)

Rhizopuspepsin 2APR Rhizopus chinensis 181 20 1.8 0.143
Complex w/peptide inhibitor 3APR 163 11 1.8 0.147 0.13

Chloramphenicol acetyltransferase 2CLA Escherichia coli 88 7 2.35 0.152
Complex w/chloramphenicol 3CLA Strain rz1032 185 9 1.75 0.157 0.41

Proteinase a 2SGA Streptomyces griseus 184 18 1.5 0.126
Complex w/tetrapeptide 5SGA 156 4 1.8 0.116 0.08

Thermitase 1THM Thermoactinomyces 185 18 1.37 0.166
Complex w/eglin-c 2TEC vulgaris 183 18 1.98 0.165 0.24

Thermolysin 3TLN Bacillus thermoproteolyticus 153 8 1.6 0.213
Complex w/Val-Trp 3TMN 157 9 1.7 0.173 0.10

Actinidin 2ACT Actinidia chinensis 200 16 1.7 0.180
Complex w/e-64 1AEC 196 11 1.86 0.145 0.11

Adipocyte lipid-binding protein 1LIB Mus musculus 83 6 1.7 0.180
Complex w/hexadecanesulfonic acid 1LIC 64 2 1.6 0.195 0.32

Barnase 1BSA Bacillus amyloliquefaciens 240 17 2.0 0.173
Complex w/DNA (CGAC) 1BRN 208 23 1.76 0.190 0.45

Bira bifunctional protein 1BIA Escherichia coli 43 3 2.3 0.190
Complex w/biotinylated lysine 1BIB 19 1 2.8 0.173 0.48

Carboxypeptidase A 5CPA Bos taurus 194 14 1.54 0.190
Complex w/phosphonate 6CPA Pancreas 127 5 2.0 0.193 0.36

Deoxyribonuclease I 3DNI Bos taurus 221 11 2.0 0.177
Complex w/DNA 2DNJ Pancreas 210 19 2.0 0.174 0.37

Cholesterol oxidase 3COX Brevibacterium 409 13 1.8 0.156
Complex w/dehydroisoandrosterone 1COY Sterolicum 367 1 1.8 0.159 0.24

Carbonic anhydrase II 1CA2 Homo sapiens 152 4 2.0 0.173
Complex w/trifluoromethane- 1BCD Erythrocytes 193 6 1.9 0.154 0.20
sulphonamide

a Root-mean-square positional deviation for all protein backbone atoms between the ligand-bound and free structures.
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correct-vote term in the fitness function resulted in
a smoother function and drove the GA to change
the weights in a direction that improved predic-
tions. Thus, the fitness score for each weight set had
two parts: one measuring the number of correct
predictions, and another measuring votes for the
correct category.

The GA engine for Consolv, based on GAUCSD
code (Schraudolph & Grefenstette, 1992), is
designed to minimize, rather than maximize, a
function. Therefore, Consolv’s GA minimized anti-
fitness, measured by incorrect votes and predic-
tions:

anti-fitness(weight set)

= 0% incorrect predictions
in each category 1

+ 0% incorrect
votes 1 = 0s

c

i = 1

pi

ti
× 1

c1 + 0 v
nk1

where:

c = the number of categories = 2 (conserved or
displaced),

pi = the number of incorrect predictions for
category i,

ti = the number of waters of category i,
v = the total number of incorrect votes,
k = the number of voting neighbors (the k

parameter for the knn), and
n = the total number of waters being evaluated.

For some of the training runs, a weight
parsimony term was included in the fitness
function to find the minimum magnitude for each
weight consistent with high predictive accuracy.
The parsimony term equalled the average of the
four feature weights multiplied by a parsimony
constant, and resulted in a linear penalty for
increasing any of the weights. A parsimony
constant of 0.04 reduced feature weights to values
generally less than 2, maintained consistency
between weights in independent GA runs, and kept
predictive accuracy to within one or two percent of
the accuracy in the absence of a parsimony term. By
the end of a typical GA run, a parsimony term with
a constant of 0.04 contributed 3% to the overall
fitness function.

Consolv training and testing

Training of the knnGA for Consolv, shown
schematically in Figure 4, consisted of a two-way
interaction between the weighted knn prediction
module and the GA learning module. The GA
passed feature weights to the knn, and the weights
were used to linearly scale the corresponding knn
axes. This scaled knn feature space (Figure 2) was
then used to make predictions for a test set of water
molecules. Since the conserved or displaced status
of these test water molecules was known in
advance, the knn could return a fitness score for

each weight set based on the number of correct
predictions achieved using a particular set of axis
weights. The GA used these fitness scores as the
basis for selecting weight sets to proceed to the next
generation. Upon convergence of the knnGA
algorithm, this training produced an optimized
weight set, which could then be used by a single
run of the weighted knn algorithm without the GA
to predict the conserved or displaced status of
water molecules in new structures not included
during training. The training process could either
be halted after a fixed number of knnGA
generations, or when the incremental gains in
predictive accuracy dropped below a threshold.
Consolv training runs were executed for a fixed
number of generations ranging from 100 to 500;
most runs proceeded for 200 generations. In all
cases, the incremental prediction gains became
negligible before the run terminated. Population
sizes ranged from 200 to 500 individuals (weight
sets), for a total of 20,000 to 250,000 knn executions
per training run.

The GA represents feature weight sets as a linear
string on a chromosome, and weights placed
together on the chromosome are less likely to be
split during crossover than weights farther apart.
Thus, values which are nearby on the chromosome
may be cooptimized, or ‘‘linked’’. For chromo-
somes with a large number of features, linkage can
be minimized using an additional genetic operator
called inversion. The inversion operator reverses
the order of a randomly selected segment of the
chromosome. The original configuration of the
segment is tracked, so the change does not affect the
phenotypic expression of the chromosome, merely
the way in which it is stored in the GA. Using
inversion, every pair of features on the chromo-
some is equally likely to be nearby, or linked,
during the course of a GA run. For Consolv, the
number of feature weights on the GA chromosome
was not large enough to warrant including an
inversion operator. To assess possible linkage,
several GA runs were conducted using different
chromosome orderings (‘‘static inversion’’), while
keeping all other GA parameters the same.

Consolv was trained on the 1700 first-shell water
molecules selected for the knowledge base. Train-
ing experiments were designed to optimize the
performance of Consolv on the prediction of
conserved or displaced status for active-site water
molecules in the absence of ligand knowledge, or
the prediction of conservation of first-shell water
sites between independently-solved structures. For
all runs, the environmental features in the database
were normalized to range over the continuous
closed interval [1.0 to 10.0] to eliminate implicit axis
weighting resulting from different ranges of values
for the four different features. After training was
complete, Consolv was tested on the active-site
waters from seven new, non-homologous proteins
(Table 2) chosen according to the criteria used for
the original 13 structures. Consolv’s knn module
was run on these new proteins using the feature
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Table 2. Seven new crystallographic structural pairs selected for unbiased testing
PDB First shell Active site Resolution RMSDa

Protein Code Source waters waters (Å) R-factor (Å)

Glutathione S-transferase b Schistosoma 94 3 2.4 0.197
Complex w/praziquantel japonica 64 1 2.6 0.212 0.19

RTEM-1 b-lactamase c Escherichia 164 6 1.7 0.184
Complex w/penicillin G coli 176 4 1.7 0.182 0.22

Cyclodextrin glycosyltransferase 1CGT Bacillus 532 9 2.0 0.187
Complex w/glucose 1CGU circulans 410 8 2.5 0.166 0.34

Enolase 3ENL Saccharomyces 279 5 2.25 0.154
Complex w/2-phospho-D-glyceric acid 5ENL cerevisiae 304 14 2.2 0.148 0.21

Trp repressor 2WRP Escherichia 142 32 1.65 0.180
Complex w/synthetic operator 1TRO coli 250 66 1.9 0.167 2.18

Concanavalin A 2CTV Canavalia 140 7 1.95 0.153
w/a-methyl-D-mannopyranoside 5CNA ensiformis 158 7 2.0 0.199 0.42

Dihydrofolate reductase 1DR2 Gallus gallus 71 6 2.3 0.158
Complex w/biopterin 1DR3 Liver 100 16 2.3 0.140 0.12

a Root-mean-square positional deviation for all protein backbone atoms between the ligand-bound and free structures.
b Provided by Drs Michele McTigue and John Tainer, The Scripps Research Institute (McTigue et al., 1995).
c Provided by Drs Natalie Strynadka and Michael James (Strynadka et al., 1992).

weight sets evolved from training on the 1700-
water knowledge base (a balanced number of
conserved and displaced sites from the 13
structures in Table 1) or the 2832-water knowledge
base (a balanced number of conserved and
displaced sites from all 20 structures in Tables 1 and
2). These tests were then evaluated to determine the
method’s accuracy.

Accuracy was measured in three ways: by the
number of correctly predicted water sites out of the
total number of evaluated sites (percentage
accuracy), by the percentage accuracy for each class
(conserved, displaced), and by the Matthews
coefficient Cm, which assesses the balance of
accuracy between classes (Matthews, 1975). Using
the abbreviations P for the number of predicted
sites, O for observed, C for conserved, and D for
displaced (e.g. PCOC = ‘‘number of sites predicted
conserved and observed conserved’’):

Cm = {(PCOC)(PDOD) − (PDOC)(PCOD)}

6{(OC)(PC)(OD)(PD)}1/2

While Cm is useful for assessing accuracy and
balance simultaneously, it can have a small value
even when the accuracy for each class is high. This
occurs, for instance, when the number of observed
members for the two classes is significantly
different. Furthermore, Cm is undefined (equals
infinity) if one of the classes has no observed
members, or if it has no predicted members.

To test the ability of standard statistical methods
to differentiate between environments associated
with conserved and displaced water sites, the
Discrim module of the SAS statistical analysis
package (SAS Institute, Inc., Cary, NC) was used to
perform discriminant analysis on the 1700-water
data set plotted in the four-dimensional environ-
mental feature space, and the results were
compared with those of Consolv. Discriminant

analysis identifies the axis (in general, a linear
combination of the original axes) along which the
classes of objects (e.g. conserved and displaced) can
be maximally separated. In addition, threshold tests
were performed to determine whether a decision
boundary perpendicular to a feature axis (e.g. a
decision rule such as ‘‘if B-value >70.0 Å2, then
predict displaced’’) could be constructed such that
nearly all objects above the boundary belonged to
the same class, providing good water classification.
A program was written to extract all water
molecules from the Consolv first-shell knowledge
base meeting a given threshold criterion (e.g. all
waters with B-value >70.0 Å2). Thresholds were
finely sampled for each parameter, and the
proportion of conserved and displaced waters
above each threshold was examined to determine if
conserved or displaced waters predominated.

Results and Discussion

Statistics of conserved and displaced
water molecules

Statistical analysis of first-shell water molecules
in the 13 training proteins (Table 1) revealed some
interesting trends. The ligand-free structures con-
tained a total of 2334 first-shell water molecules. Of
these, 850 were displaced in the corresponding
ligand-bound structures, while 1484 were con-
served, resulting in a displaced:conserved ratio of
1:1.75. Consolv’s 1700-water knowledge base in-
cluded the largest balanced set of 850 displaced and
850 conserved water sites from these proteins. The
displaced:conserved ratio was reversed in the
active sites, where ligand interactions can displace
water. There were 157 active-site bound water
molecules in the ligand-free structures, 114 dis-
placed and 43 conserved, resulting in a dis-
placed:conserved ratio of 2.7:1. Distribution
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Figure 5(a and b) legend opposite



Figure 5. Distribution of environmental feature values for conserved and displaced water sites. The unnormalized
values of atomic density, atomic hydrophilicity, temperature factor, and number of hydrogen bonds are shown
separately for all conserved and all displaced (non-conserved) first-shell water sites in 20 pairs of free and ligand-bound
protein structures (Tables 1 and 2). The histograms show the distribution of the features, measured in the ligand-free
structure as follows: (a) atomic density, the number of protein atoms within 3.6 Å; (b) atomic hydrophilicity, the sum
of the expected number of hydrations (Kuhn et al., 1995) for all protein atoms and water molecules within 3.6 Å; (c)
B-value, the PDB temperature factor for the water molecule (Å2); and (d) the number of hydrogen bonds between the
water molecule and protein donor or acceptor atoms within 3.6 Å.
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functions for atomic density, atomic hydrophilicity,
temperature factor, and the number of hydrogen
bonds for conserved and displaced water molecules
are presented in Figure 5. The distributions for
conserved and displaced sites for each feature were
highly overlapping, presenting a challenge for
classification and suggesting the importance of
evaluating the features simultaneously to provide
more information for distinguishing conserved
from displaced sites.

Training results

Consolv’s GA parameters were individually
optimized through a number of preliminary
experiments. One of the most sensitive search
parameters proved to be the k value used by the
knn module, determining the number of neighbors
that vote on the status of each new water molecule.
The effect of varying k was analyzed using an
unweighted version of the knn algorithm (a
computationally efficient alternative to the knnGA),
allowing tests of a number of k’s. The k-dependence
of predictive accuracy was evaluated for two
datasets: the 157 active-site waters, and the 1700
first-shell waters (Figure 6). Results of these tests
showed that k = 3 is favored for active-site water
molecules, whereas a larger k value (k = 39) is
favored for first-shell water molecules. Similar tests
using the Consolv knnGA for k = 3, 5, and 7
indicated that a k value of 3 consistently
outperformed other k’s tested for active-site
prediction. Odd values of k were used to avoid
invoking tie-breaking schemes. Additional work
remains to determine the asymptote in predictive
accuracy as a function of k for first-shell waters
using a weighted knn. However, from this
unweighted nearest-neighbor analysis, it appears
that clusters of conserved or displaced active-site
water molecules with similar structural and
chemical environments contain only 03 water
molecules, whereas clusters of conserved or
displaced first-shell waters with similar environ-
ments contain 039 water molecules.

Initial testing also showed that balancing the
number of conserved and displaced waters in the
knowledge base improved the accuracy of predic-
tions. In the first hydration shell of knowledge-base
proteins, there were almost twice as many
conserved water sites as displaced. Since the knn
prediction is based on the categories of voting
waters from the knowledge base, balancing the two
categories was necessary to avoid a strong bias
towards prediction of conserved waters. In a recent
application of a knn algorithm toward secondary
structure prediction, this balance was realised by
weighting the categories in the voting procedure
(Salamov & Solovyev, 1995). We achieved similar
results by including equal numbers of conserved
and displaced water molecules in the knowledge
base. Before balancing the knowledge base,
Consolv’s predictive accuracy for displaced waters
from the 157 active-site waters test set was 95%, and

Figure 6. An unweighted knn algorithm was applied
to waters in the knowledge base, using a range of k values
to determine the optimal k for water site classification.
157 active-site or 1700 first-shell water molecules were
classified by Consolv as conserved or displaced between
independently solved structures, based on normalized
values for atomic density, hydrophilicity, temperature
factor, and the number of hydrogen bonds at each water
site. When classifying active-site water molecules (a),
small values of k (03) yielded better predictions. In
contrast, higher k values (039) were more effective for
classifying first-shell waters (b).

for conserved waters, 22%. After balancing the
knowledge base to contain an equal number of
conserved and displaced water molecules (850 of
each), accuracy for conserved waters was 83%,
while accuracy for displaced waters was 75%.

In these preliminary training runs, used to
optimize feature weights for later unbiased tests,
the weight sets were applied to predict the status
of 1700 first-shell water molecules in the knowledge
base or 157 active-site water molecules from the
proteins in Table 1. All 114 of the displaced waters
and a random sampling of conserved waters from
the 157 active-site waters were included in the
knowledge base, due to its being constructed to
contain a maximal, equal number of conserved and
displaced first-shell water sites. This overlap
between the knowledge base and the waters being
tested facilitated a self-consistency check for
Consolv, as well as providing a set of feature
weights for use in later unbiased testing. The
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overlap introduced some bias, since each water
molecule included in both the knowledge base and
test set would correctly vote on its own status,
constituting a ‘‘self-vote’’ in the knn procedure.
However, for k = 3, two other water molecules also
contributed to the predicted status. (For later
training on first-shell sites and knn prediction on
active-site waters, self-votes were disallowed in the
algorithm.) The prediction results from these initial
tests (top of Table 3) were encouraging: Consolv was
able to correctly predict conserved/displaced status
for 121 out of 157, or 77.1%, of the active-site waters
from the thirteen structures in Table 1. The Cm value
of 0.52 for this test indicates good predictive
accuracy and good balance, since 75% accuracy for
both the conserved and displaced classes yields a
Cm value of 0.50; for perfect prediction, Cm = 1, for
50% correct prediction in both classes, Cm = 0, and
for entirely incorrect predictions, Cm = −1. When
Consolv was trained solely on a knowledge base
consisting of a balanced set of 59 conserved and 59
displaced active-site water molecules from all
structures, rather than on the balanced set of 1700
first-shell waters, the prediction rate for the 157
active-site water molecules was 3.2% lower (73.9%
correct; Table 3). This is probably due to the smaller
sample size (118) of balanced conserved and dis-
placed active-site water molecules not providing as
complete a characterization of favored water
environments. Conversely, when the knowledge
base for training was expanded to include the
largest balanced set of 1416 conserved and 1416 dis-
placed water sites from the 20 proteins in Tables 1
and 2, the predictive accuracy increased to 79.5%
for the 224 active-site waters in these proteins. A
genetic program version of Consolv, which allows
non-linear scaling of feature axes, provided 79.0%
accuracy when trained on the 1700-water knowl-
edge base to predict the conservation of 157
active-site water molecules (Raymer et al., 1996).

To assess whether feature weights were linked,
and, therefore, cooptimized on the GA chromo-
some during training, runs were executed for the
1700-water knowledge base and the 157 active-site
water test set with k = 3 for three different
chromosome orderings: 4adn, ahp, bval, hbd5,
4ahp, hbd, adn, bval5, and 4hbd, bval, adn, ahp5,
where adn = atomic density, ahp = atomic hy-
drophilicity, bval = temperature factor, and
hbd = number of hydrogen bonds. Each run
achieved the same predictive accuracy (77.1%)
independent of the chromosome ordering, indicat-
ing that linkage is not a problem.

For prediction of first-shell hydration conserved
between independently determined structures,

Consolv was trained on the 1700-water and
2832-water knowledge bases (middle of Table 3).
Maximum predictive accuracy, 68.8% (Cm = 0.38),
was obtained for k = 39 with the 2832-water
knowledge base. Including a parsimony term in the
GA fitness function to minimize the magnitude of
individual weights reduced the accuracy only 0.4%
for an otherwise identical run. Somewhat lower
accuracy was found for k = 7 first-shell training
using the 1700-water (64.5%) and the 2832-water
(67.9%) knowledge bases. Training results for
first-shell (k = 7 and k = 39) and active-site waters
(k = 3) showed that use of the larger, 2832-water
knowledge base improved accuracy from 1 to 3.4%.
It was unexpected that training on conservation of
first-shell hydration would have lower accuracy
than training on conservation of active-site water
molecules upon ligand binding. A possible expla-
nation is that active-site bound water molecules are
more likely to be carefully assigned and refined by
crystallographers due to their functional import-
ance; therefore the Consolv training data may have
contained fewer missing or spurious water assign-
ments in active sites than were found in the first
hydration shells.

Analysis of water binding determinants

Each Consolv training session resulted in a weight
set specifying the relative importance of the water
molecule’s temperature factor and the hydrogen-
bonding potential, atomic density, and atomic
hydrophilicity of the water molecule’s neighbor-
hood in determining whether the water was
conserved or displaced. However, because some
features were highly correlated, as shown in
Table 4, several different Consolv weight sets could
give similarly accurate predictions. For instance,
the site’s atomic hydrophilicity was measured
essentially as hydrophilicity-weighted atomic den-
sity, giving a high correlation coefficient with
atomic density (0.64). The number of hydrogen
bonds correlated both with the density of atomic
neighbors (0.40) and their hydrophilicity (0.78), due
to the potentially greater availability of hydrogen-
bond partners. Temperature factor had a relatively
low anti-correlation (between −0.28 and −0.32) with
the three other environmental features. Analysis of
the feature weights for the knnGA training runs in
Table 3 indicated that one of two highly correlated
features, atomic density and atomic hydrophilicity,
was the most important discriminator between
conserved and displaced active-site water mol-
ecules in each of the three most accurate training
runs; when one of these two features had a large

Table 4. Pearson product–moment correlation between environmental features for first-shell waters from 20 structures
Atomic density Atomic hydrophilicity Temperature factor Number of hydrogen bonds

Atomic density 1.000
Atomic hydrophilicity 0.642 1.000
Temperature factor −0.292 −0.318 1.000
Number of hydrogen bonds 0.405 0.783 −0.278 1.000
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Figure 7. Stereo view of water-mediated and polar ligand atom interactions in the active site of dihydrofolate
reductase. The solvent-accessible molecular surface of ligand-free dihydrofolate reductase (DHFR; PDB structure 1DR2,
McTigue et al., 1992) is colored by the sum of the atomic hydrophilicity values of protein atoms and water molecules
within 3.6 Å of the surface, allowing analysis of the contributions of hydrophilicity and hydrophobicity to water and
biopterin binding. Biopterin (tubes with carbon atoms colored green, oxygen colored red, and nitrogen blue; from PDB
structure 1DR3; McTigue et al., 1992) is positioned based on main-chain superimposition between the ligand-bound
and free structures (RMSD = 0.12 Å). The six active-site water molecules from the ligand-free structure are shown as
spheres; blue spheres are water molecules conserved in the complex, while mesh spheres are waters displaced upon
biopterin binding. The displaced water at center was supplanted by an oxygen atom in biopterin (mesh sphere
surrounding red tube). The water at right was displaced by a nitrogen atom in biopterin (mesh surrounding blue tube),
and is an example of a water molecule predicted by Consolv to be conserved, but actually substituted by a similarly
polar ligand atom. Atomic hydrophilicity values are: 0.08 hydrations per carbon or sulfur atom, 0.35 per neutral
nitrogen, 0.44 per positively charged nitrogen, 0.51 per negatively charged oxygen, and 0.53 per neutral oxygen atom
(Kuhn et al., 1995). Surface colors range from red, most hydrophobic (atomic hydrophilicity of 0.1, or 01 carbon or
sulfur neighbor), to yellow (atomic hydrophilicity of 1.5) and green (atomic hydrophilicity of 3.0), to blue, most
hydrophilic (atomic hydrophilicity >4, equivalent to 8 or more hydrophilic neighbors). The solvent-accessible protein
surface was calculated using a 1.4 Å radius probe sphere and the following van der Waals radii including implicit
hydrogens: O, 1.40 Å; OH, 1.60 Å; N, 1.54 Å; NH, 1.70 Å; NH2, 1.80 Å; NH3, 2.00 Å; CH, CH2, CH3, 2.00 Å; C, 1.74 Å;
CH(sp2), 1.86 Å; S, 1.80 Å; and SH, 1.85 Å. The surface was generated as a triangulated surface using MSP (Connolly,
1993; http://www.biohedron.com) and visualized using AVS (Upson et al., 1989; Advanced Visual Systems, Inc.,
Waltham, MA) using modules developed by Michael Pique and colleagues at The Scripps Research Institute.

weight, the other had a small weight, consistent
with the second feature not contributing much
additional information for classification.

To identify a consistent and parsimonious
(minimal magnitude) weight set, 20 independent
knnGA runs were performed with the 1700-water
knowledge base and 157-water test set, different
initial random seeds, k = 3, and a 150-fold range in
parsimony constants (0.002 to 0.3). These runs had
an average accuracy of 76.4% for active-site water
classification, as compared to 77.1% without
parsimony; the accuracy of the worst run was
73.9%, and 15 of the runs achieved 77.1% accuracy.
(For brevity, these 20 runs are not listed in Table 3.)
Furthermore, when the weights for each run were
normalized to sum to 1, the mean and standard
deviation in weights over these parsimony runs
were consistent with earlier results: an average
atomic density weight of 0.11 (std. dev. 0.0076);
atomic hydrophilicity, 0.37 (0.059); temperature
factor, 0.26 (0.054); and number of hydrogen bonds,
0.25 (0.022). In the most accurate active-site training
run (2832-water knowledge base/224-water test set

with k = 3, 81.4% accuracy on conserved water
prediction, 78.8% accuracy on displaced water
prediction, and 79.5% overall accuracy), atomic
density was the most important feature for
classifying active-site waters, with temperature
factor and number of hydrogen bonds each
contributing approximately one-half as much. The
importance of atomic density for classifying
active-site waters may reflect the propensity of
water to bind in surface grooves, since atomic
density is related to groove depth (Kuhn et al.,
1992). For first-shell training, the number of
hydrogen bonds was consistently the most import-
ant feature for discriminating between conserved
and non-conserved waters in all training runs
(1700/1700 at k = 7 and k = 39, and 2832/2832 at
k = 7 with parsimony and at k = 39 with and
without parsimony; middle of Table 3).

Unbiased predictions on new structures

After tuning the search parameters and perform-
ing self-consistency tests on water molecules in the
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knowledge base, Consolv’s weighted knn algorithm
was applied to active-site water molecules from
seven new, non-homologous protein structures
(Table 2). No information about the new structures
was provided during the training phase, so results
for these structures provide an unbiased indication
of predictive ability. These predictions ran much
more quickly because the knnGA was not being
trained on the new structures. Rather, the
optimized weight set produced by the genetic
algorithm during previous training (e.g. on the 157
active-site waters with the 1700 first-shell water
knowledge base) was used by the weighted knn
classifier alone to predict water status in the new
structures. KnnGA training runs on a large test set
(1700-water knowledge base and 1700-water test
set) typically took 12 hours elapsed time (reduced
from four days by implementing the branch and
bound knn algorithm (bbknn) of Fukunaga &
Narendra, 1975) running on one processor of a

50 MHz SPARCstation (Sun SPARC20-502). Predic-
tions on hundreds of new water sites using the
stand-alone weighted bbknn took less than a
second elapsed time. This will allow a fast, portable
version of Consolv to be provided for other
laboratories’ use, consisting of the knowledge base,
optimal k value and weight set (the k = 39
2832/2832 weights optimized for first-shell predic-
tion and the k = 3 2832/224 weights optimized for
active-site prediction), software for calculating
water environments in new proteins, and the
weighted bbknn classifier module of Consolv.

For the 67 active-site waters in the seven new
proteins, Consolv achieved an unbiased predictive
accuracy of 74.6% (50/67 correct predictions,
Cm = 0.41; bottom of Table 3) using a weight set
derived from training on the 1700-water knowledge
base with k = 3. For conserved water molecules the
predictive accuracy was 68.8%, while for displaced
waters the accuracy was 76.5%. Training and

Figure 8. Hydration of the Trp repressor. Spheres shown at the protein-DNA interface are water molecules present
in the ligand-free Trp repressor structure (blue ribbons and tubes; PDB structure 2WRP; Zhang et al., 1987). The DNA
ligand (pink tubes; from PDB structure 1TRO; Joachimiak et al., 1994; Otwinowski et al., 1988) is shown for reference,
and positioned based on main-chain superposition of the ligand-bound repressor onto the free repressor. Water
molecules shown as blue spheres were correctly predicted by Consolv to be displaced in the ligand-bound structure,
and water molecules shown in magenta were correctly predicted to be conserved. Peach-colored water molecules were
predicted to be displaced but were actually conserved, whereas the green water molecule at far right was predicted
to be conserved, but was actually displaced in the ligand-bound structure.
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testing results support the use of small k values,
particularly k = 3, for active-site prediction; results
for k = 7, which have moderate accuracy, are
included in Table 3 to facilitate comparison
between active-site and first-shell training and
testing runs. Consolv’s unbiased k = 3 predictive
accuracy on the proteins from Table 2 (1CGT, 75%;
1DR2, 67%; 2CTV, 71%; 2WRP, 88%; 3ENL, 60%;
RTEM, 50%; and GST, 33%; with 74.6% overall
accuracy for their 67 active-site waters) correlated
only with the number of active-site bound waters
in the free structure, not with the structure’s
resolution or R-factor, nor those of the ligand-
bound structure used to check the predictions.
Using the 1700-water knowledge base, there was a
modest 2.5% decrease in predictive accuracy
between biased prediction on the 157 active-site
waters and unbiased prediction on the 67 new
active-site waters. Consolv was also used for
unbiased prediction of first-shell water molecule
conservation in the seven new protein pairs
(bottom of Table 3). Similar predictive accuracy and
balance for these 1545 water sites was attained
using a weight set derived from k = 7 knnGA
training (60.8%, Cm = 0.22) and from k = 39 training
(61.0%, Cm = 0.23).

Water conservation in multiple
independently-solved structures

A related application for Consolv is to evaluate
the likelihood of conserved hydration in several
independent structures of a protein with the same
ligand-binding status. To evaluate its suitability for
this purpose, we applied Consolv’s weighted knn to
the water sites in each of three high-resolution
bovine b-trypsin structures (PDB 1TPO, 2PTN, and
3PTN) using k = 39 and weights derived for
first-shell prediction with the 2832-water knowl-
edge base. Using weights without parsimony,
Consolv’s accuracies on predicting conservation of
water sites in 1TPO, 2PTN, and 3PTN relative to the
bovine pancreatic trypsin inhibitor complex 2PTC,
were, respectively, 66.2%, 69.7%, and 70.5%
(Cm = 0.42, 0.44, and 0.48); with weights derived
using a parsimony constant of 0.04, the results were
64.9%, 71.0%, and 70.5% (Cm = 0.40, 0.46, and 0.49).
These tests had an average of 8% greater accuracy
on predicting first-shell conserved water for trypsin
structures than was found for the seven structural
pairs in earlier unbiased tests (Table 3). This may be
attributable to the use of a larger knowledge base
(2832 waters versus 1700) or to the accurate
crystallographic assignment of water sites in the
four high-resolution (1.6 to 1.9 Å) trypsin struc-
tures.

Testing other statistical methods for
classifying water sites

An unweighted knn classifier, trained using the
1700-water Consolv knowledge base and the 157
active-site water test set with k = 3, achieved a

prediction rate of 66.9%, about 10% lower than
Consolv’s weighted knn result, 77.1%. Discriminant
analysis on the same data using the Discrim
function in SAS software resulted in prediction
rates of 49.7% for a linear discriminant function,
and 51.6% for a quadratic function. This random
level of prediction is not surprising, since paramet-
ric discriminant analysis is more appropriate for
classifying data with well-separated Gaussian
distributions in the multi-feature space.

Threshold-based decision rules were also com-
pared with Consolv. Assessing the proportion
of water sites satisfying a feature threshold criterion
(e.g. B-value >70 Å2) that are conserved or
displaced gave similar results for all four environ-
mental features. The feature threshold was finely
sampled, and when the threshold was set such that
a reasonable number of water molecules qualified,
no useful tendency towards conservation or
displacement could be detected. Only when the
threshold was set to an extreme value, resulting in
a small number of waters satisfying the criterion,
was there a strong tendency towards conservation
or displacement. For example, of 16 water
molecules in the knowledge base with B-value
>80 Å2, only one was conserved, but these 16 waters
represented only 0.4% of the waters in the
knowledge base; when the threshold was set to
B-value >70 Å2, fewer than 3% of the knowledge-
base waters were included, but the proportion
of conserved waters was already 37%. Thus,
threshold-based rules are not a practical means for
predicting water site conservation.

Displacement of active-site bound water by
polar ligand atoms

Examination of active-site water molecules
mispredicted by Consolv revealed several interest-
ing trends. 71% of mispredictions in the seven new
structures involved displaced waters that Consolv
predicted to be conserved. Of the 12 displaced
water molecules predicted to be conserved, 8 were
displaced by an oxygen atom and 2 by a nitrogen
atom from the ligand; thus, 83% of water sites
mispredicted to be conserved were replaced by a
polar ligand atom. Consolv was therefore correct in
determining that the micro-environment of these
sites favored conserved polar atom binding. When
the definition of conserved sites included those
occupied by water or a polar ligand atom in the
ligand-bound structure (sites of ‘‘effective sol-
vation’’; Zhang & Matthews, 1994; Faerman &
Karplus, 1995), Consolv’s accuracy increased to
89.7% (Cm = 0.78), indicating high accuracy for
detecting conserved polar atom binding. In
dihydrofolate reductase, for example, one of two
mispredicted waters was predicted to be conserved,
but was actually displaced by a polar ligand atom.
Figure 7 shows the active-site water molecules from
the ligand-free structure of dihydrofolate reductase
with actual conserved or displaced status indicated
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respectively by solid or mesh spheres, the
ligand-free surface colored by atomic hydrophilic-
ity, and the ligand, biopterin, superimposed from
the structure of the complex (McTigue et al., 1992).
The water site at extreme right (white mesh
surrounding blue tube) was predicted by Consolv to
be conserved and was actually displaced by a
nitrogen atom in biopterin.

Ligand hydration

The importance of ligand hydration for some
complexes is suggested by Consolv’s predictions on
the Trp repressor (Figure 8). For this protein, nearly
all water molecules in the free structure were
correctly predicted to be displaced upon ligand
binding. However, many water molecules do
mediate the protein–DNA interface of the Trp
repressor complex (Otwinowski et al., 1988), and
free nucleic acid structures are typically well
hydrated (Berman, 1994; Westhof, 1988), suggesting
that DNA-bound hydration is involved. For ligands
with structures solved independently of the
protein, the contribution of ligand hydration to
complex formation can be evaluated by the same
approaches used here for proteins: assessing water
conservation among superimposed, independently-
solved structures of the ligand, and analyzing the
ligand micro-environment of bound water mol-
ecules using Consolv.

Consolv enhancements and applications

An intrinsic feature of Consolv is the ability to
train on additional protein structures and to test
other environmental features of water molecules’
environments for their ability to improve discrimi-
nation between conserved and displaced water
sites. Examples of such features are electrostatic
potential (Gilson & Honig, 1988); thermal mobility
measured by an index incorporating both tempera-
ture factor and occupancy (L. A. Kuhn and P. C.
Sanschagrin, unpublished results) evaluated separ-
ately for the water molecule and for neighboring
protein atoms; separate counts of main-chain and
side-chain hydrogen bonds and hydrogen bonds to
other water molecules; and evolutionary sequence
conservation in the neighborhood of the water site,
determined from multiple-sequence alignments.
Superimposed, independently solved structures
can be used to define more reliable, consensus
water sites (Faerman & Karplus, 1995) and quantify
the degree of water site conservation for training
Consolv, removing the restriction that the knowl-
edge base include only those proteins with
structures known in both the ligand-bound and free
state. This greatly increases the number of
high-resolution (E2.0 Å) structures available for
training and also allows prediction of the relative
likelihood of water site conservation, based on the
observed degree of conservation of environmen-
tally similar waters.

A key goal is to apply Consolv prediction to
improve protein structure-based inhibitor design.
Appropriately incorporating conserved water has
been a missing link in the analysis of protein
recognition, and Consolv provides a means for
modeling active-site water conservation with 75%
accuracy. This unbiased accuracy for two-state
(conserved, displaced) classification of water sites is
comparable to the best of current three-state (helix,
strand, loop) secondary structure prediction
methods, 70 to 72% (Mehta et al., 1995; Rost &
Sander, 1993). Consolv’s ability to predict conserva-
tion of water or polar ligand atom binding with
90% accuracy, independent of the ligand, provides
a rational basis for refining drug design templates
to appropriately include sites likely to conserve
water or bind a polar ligand atom, as well as to
disinclude water molecules likely to be displaced.
Protein mutagenesis, drug design, and molecular
simulations will benefit from a more complete
representation of proteins that includes conserved
bound water.

The Consolv knowledge base and knn water
classification software will be made available to
other researchers; please contact Michael Raymer
or Leslie Kuhn (raymermi@sol.bch.msu.edu;
kuhn@agua.bch.msu.edu). For related information,
see http://www.bch.msu.edu/labs/kuhn/web/index.html.
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Jiang, J.-S. & Brünger, A. T. (1994). Protein hydration
observed by X-ray diffraction: solvation properties of
penicillopepsin and neuraminidase crystal struc-
tures. J. Mol. Biol. 243, 100–115.

Joachimiak, A., Haran, T. E. & Sigler, P. B. (1994).
Mutagenesis supports water mediated recognition in
the Trp repressor-operator system. EMBO J. 13,
367–372.

Jones, G., Willett, P. & Glen, R. C. (1995). Molecular
recognition of receptor sites using a genetic
algorithm with a description of desolvation. J. Mol.
Biol. 245, 43–53.

Karplus, P. A. & Faerman, C. (1994). Ordered water in
macromolecular structure. Curr. Opin. Struct. Biol. 4,
770–776.

Kelly, J. D. & Davis, L. (1991). Hybridizing the genetic
algorithm and the k nearest neighbors classification
algorithm. Proceedings of the Fourth International
Conference on Genetic Algorithms and their Applications,
pp. 377–383.

Kuhn, L. A., Siani, M. A., Pique, M. E., Fisher, C. L.,
Getzoff, E. D. & Tainer, J. A. (1992). The
interdependence of protein surface topography and
bound water molecules revealed by surface accessi-
bility and fractal density measures. J. Mol. Biol. 228,
13–22.

Kuhn, L. A., Swanson, C. A., Pique, M. E., Tainer, J. A.
& Getzoff, E. D. (1995). Atomic and residue
hydrophilicity in the context of folded protein
structures. Proteins: Struct. Funct. Genet. 23, 536–547.

Kuntz, I. D. & Kauzmann, W. (1974). Hydration of
proteins and polypeptides. Advan. Protein Chem. 28,
239–345.

Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N.,
Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner,
M. M., Wong, Y. N., Chang, C.-H., Weber, P. C.,
Jackson, D. A., Sharpe, T. R. & Erickson-Viitanen, S.
(1994). Rational design of potent, bioavailable,
nonpeptide cyclic ureas as HIV protease inhibitors.
Science, 263, 380–384.

Le Grand, S. M. & Merz, K. M., Jr (1994). The genetic
algorithm and protein tertiary structure prediction.
In The Protein Folding Problem and Tertiary Structure
Prediction (Merz, K. M., Jr & Le Grand, S. M., eds),
pp. 109–124, Birkhäuser, Boston.
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