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INTRODUCTION

We represent the microstructure of a protein as a generic bar-joint truss frame-
work, where the hard covalent forces and strong hydrogen bonds are modeled as dis-
tance constraints. The mechanical stability of the corresponding bar-joint network is
then analyzed using graph theoretical techniques. The computer program for analyzing
the rigidity of substructures within macromolecules® is referred to as FIRST (Floppy
Inclusion and Rigid Substructure Topography). This program provides a real-time
tool for evaluating the intrinsic flexibility within a protein by applying a new combina-
torial constraint counting algorithm. Unlike many methods for parsing protein folds,
this new approach gives exact mechanical properties of a protein structure (or other
macromolecules) under a given set of distance constraints. These properties include;
counting the number of independent degrees of freedom, locating overconstrained re-
gions where internal strain arises, partitioning the protein structure into rigid clusters
that are separated by flexible joints and identifying underconstrained regions where
continuous deformations can take place.

This article proceeds as follows. We begin by discussing some basic notions about
intrinsic flexibility in proteins. We then highlight the underlying physical assumptions
of our approach, introducing concepts from graph rigidity and sketching the computa-
tional algorithm. Some example applications are given, including the FIRST analysis
of a lysine-binding protein.

Intrinsic Flexibility of Proteins

Over seven thousand protein structures have been determined to date using X-
ray crystallography?. Such crystallographic structures are deduced from sophisticated
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refinement analysis in conjunction with stereochemical modeling?, and they represent
the best average structure over many realizations of individual protein molecules mak-
ing up the solid crystal. Frequently in crystallographic structural studies, independent
crystal forms trap the protein in different conformational states, suggesting an intrin-
sic flexibility within the protein*. The study of protein motion in solution using NMR
spectroscopy shows that many different conformational states can be explored by a pro-
tein in its natural environment®. The intrinsic flexibility of a protein is often manifested
in conformational changes® that are responsible for the large-scale rearrangements of
domains or the relative motion of smaller fragments within individual domains.

A collection of X-ray crystal structures for a protein in different conformations
allows a limited number of structural comparisons, from which some information about
the intrinsic flexibility can be deduced. Prediction of the flexibility of a protein struc-
ture that is known only in one conformation can sometimes be inferred from other,
similar protein structures. Molecular dynamics (MD) simulations can also be used to
observe the dynamical evolution of a given protein as it explores various conformational
states having energies near that of its native state. In practice, simulations cannot be
performed for long enough times to explore the full range of available conformations.

Some computational procedures have been developed”'? to characterize the in-
trinsic flexibility and rigidity within a protein. These procedures fall into two classes.
One makes use of comparing different conformational states”? while the other class
deals with identifying protein domains or characterizing protein structure!®-'? for any
given conformation. These methods are generally fast (ranging from hours to minutes
of CPU time), and give considerable insight into the mechanical stability of a protein.
Nevertheless, each method has its limitations. In a broad sense, the methods in the
first class are limited to the diversity (and accuracy) of the conformational states that
are available from experiment for comparison, whereas the methods in the second class
are limited to the correlation between the selected empirical criteria such as packing
density or structural protrusions. FIRST falls into the second class, but it has the ad-
vantage that it runs in a fraction of a second, and it is based on a systematic distance
constraint approach where rigidity can be directly calculated.

Characterizing Mechanical Stability

What would the ideal scenario be for an automated computational procedure to
determine flexibility and rigidity, or more specifically the mechanical stability of a pro-
tein? Besides being fast and efficient, the method should only require knowing the
protein structure. The output should consist of a universal scheme for characterizing
mechanical stability that gives a robust quantified description of the degree of stability
throughout the protein.

Perhaps the ideal universal way to characterize mechanical stability of a protein is
via a hierarchical scheme of substructuring, reflecting in a self-consistent way the in-
teraction strengths between the identified substructures. Within this characterization,
gross features of mechanical stability between different protein conformations should
be the same with some local differences. Of course, when comparing experimentally
observed protein structures in different conformations, differences in mechanical stabil-
ity due to binding different substrates or to different packing within the crystal lattice
can occur.

Developing such an ideal automated procedure is our goal. A distance constraint
approach is used to characterize mechanical stability of a protein, where only know-
ing the underlying connectivity of the structure is required. Overconstrained regions,
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rigid substructures and underconstrained regions can be determined within a hierar-
chical scheme. Distance constraints are used to model the covalent bond forces (bond-
stretching and bond-bending) as well as any selected set of hydrogen bonds. Selection
of the imposed distance constraints for the hydrogen bonding is determined by intro-
ducing a cut-off criterion on the interaction strength. A hierarchical characterization
of the mechanical stability can be constructed by changing the chosen cut-off.

Applications to Drug Design and Protein Engineering

Rigidity and structural stability in proteins is commonly associated with close
packing of amino acids into modules or domains®!%113, Multifunctional proteins are
often built from several closely packed domains linked by flexible regions which can
allow large scale, hinge-type conformational changes®!*. There can also be shear-type
conformational changes within densely packed regions®, which are more subtle to iden-
tify. Flexible regions in proteins are often associated with loop structures, which are
thought to be functionally important. For example, as a means of regulating interac-
tions between proteins, one region in the CksHsl protein switches between loop and
beta-strand conformations, resulting in its dimerization with a protein kinase and reg-
ulation of the cell cycle in humans?®,

Conformational changes within a protein are often observed during and after ligand
binding. In addition to the flexible regions, rigid motifs are important in several areas
of protein structure and function. For many proteins, active or ligand-binding sites are
described as rigid templates, which do not undergo significant conformational change
upon ligand binding.

MICROSCOPIC FORCES AS DISTANCE CONSTRAINTS

Imposing distance constraints to replace important bonding forces between atoms
reduces the total number of degrees of freedom available to the protein. If we imagine
atoms interacting pairwise within a protein, the effect of a distance constraint is to fix
the interaction between a pair of atoms. Applying pairwise distance constraints is the
input, and the output is the set of rigid clusters, separated by flexible joints.

Obviously, in reality no set of atoms within a protein will ever define a perfectly
rigid cluster. By imposing distance constraints on the strongest interactions, to quench
mainly higher frequency motions, it is expected that defining a rigid cluster is meaning-
ful only on sufficiently long time scales. Floppy regions consist of atoms that continue
to have relative motion on these long time scales. The inherent assumption that we
make in our distance constraint approach is to neglect vibrational modes within a rigid
cluster and the coupling between inter cluster vibrational modes. The lowest frequency
from the intra cluster vibrational modes will set the relevant time scale for which the
rigid and floppy regions become meaningful. The cleanest situation occurs when the
separation between strong and weak interactions has a significant gap.

Separation Between Strong and Weak Forces

The hard covalent bonding within the protein, consisting of the bond-stretching and
bond-bending forces, defines a natural set of distance constraints. The energies associ-
ated with central bond-bending and torsional forces are of the order 25 (Kcal/mol) /A2,
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4 (Kcal/mol)/rad® and 0.06 Kcal/mol respectively'®. Note that although the energy
units are different, a direct comparison in magnitudes can roughly be made upon real-
izing that the covalent bond lengths are about 1.5A. It is common practice to fix the
covalent bond lengths and bond angles while allowing the dihedral angles to be free to
rotate. Using the dihedral angles as a set of internal coordinates, the number of degrees
of freedom to describe the motion of a protein is typically reduced by a factor of about
seven!,

In addition to the central and bond-bending forces, some torsional forces associated
with the peptide or resonant bonds lock rotational motion about the bond axis. In this
case, the dihedral angle can be fixed by using a third neighbor distance constraint.
Modeling only the strongest set of forces associated with covalent bonding as distance
constraints will not define any large rigid region. Instead, the protein flexibility will
be described by a floppy set of connected small rigid clusters that can be identified
by inspection. This happens because in all proteins, the covalent bonds form a tree-
like structure (i.e no loops) with a few exceptions consisting of rings found in some
residues (proline, histidine, phenylalanine, tyrosine and tryptophan) or perhaps more
interestingly, crosslinking from a few disulfide bonds.

Groups of atoms tend to cluster into well defined substructures such as alpha
helices and beta sheets (common secondary structures!®). Furthermore, many proteins
are made up of a collection of stable fragments*, that range in size from a small part
of a domain to an entire domain. Protein domains can be defined in various ways*?,
either by function or some particular structural characteristic, such as packing density.
In general a protein domain will consist of many atoms (typically 1000 atoms or more)
and will contain common secondary structures. From empirical evidence, it is believed
that conserved substructures exist within domains during the course of conformational
changes. These are the rigid clusters we seek to identify a priori.

We must apply distance constraints associated with other (weaker) forces in order
to determine larger rigid regions. We could of course (erroneously) produce one entire
rigid region by placing all third neighbor distance constraints associated with torsional
forces, thereby fixing all dihedral angles. The same trivial result would occur by model-
ing van der Waals interactions by distance constraints. Keep in mind, however, that a
reasonably clean separation between strong and weak forces is desired to make distinc-
tions between rigid and floppy regions. Therefore we need to apply distance constraints
to bonding forces that are stronger than torsional forces (not associated with resonant
bonds), but these forces will still be weaker than the covalent bond-bending forces.

Hydrogen Bonding: A Hierarchical Approach

It is natural to consider hydrogen bonds as the next set of (weaker) forces, after
the covalent forces, and to model them also as distance constraints. The strength of a
hydrogen bond varies from nearly as strong as the covalent bonds to as weak as the van
der Waals interactions20?1, This broad range of variation in strength indicates that the
hydrogen bond, unlike covalent bonding, is very sensitive to its local environment. We
know hydrogen bonding is very important in proteins because secondary structures,
such as alpha helices, beta sheets and hairpin turns, can be readily identified in terms
of hydrogen bond patterns that form along the mainchain of the protein!®. These
substructures frequently occur in proteins (evident from the Brookhaven Protein Data
Bank?, which is an on line computer-based archive for bio-macromolecular structures),
and their relative arrangements further define interesting structural motifs.
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The hydrogen bond patterns within the mainchain, associated with the nitro-
gen (donor) and oxygen (acceptor) atoms provide crosslinking between residues. The
crosslinking of hydrogen bonds is responsible for the high degree of mechanical stability
found within secondary structures. Similarly, we expect that the additional crosslinking
provided by hydrogen bonds outside of the mainchain will support larger mechanically
stable substructures, which may become as large as an entire domain. Modeling these
hydrogen bonds as distance constraints gives a simple way to characterize the degree
of stability within the protein. Since placing a distance constraint between two atoms
does not make a distinction between a strong or weak interaction, a weak hydrogen
bond becomes just as important as a strong hydrogen bond or a covalent bond in this
regard. Therefore, at our discretion, we must choose whether or not to model certain
bonding forces with distance constraints.

Microscopic Interactions

Strong + Weak
-

l

Umol = UCF +Ugg +U + UD+ Uother

van der Waals,
weak electrostatic,
Non bonded forces, etc
i Dihedral/Torsional
Hydrogen bond range

—> Covalent bond bending

u —> Covalent bond stretching

Figure 1. A schematic representation of ordering the microscopic forces from strongest to weakest.
Distance constraints are used to model strong bonding forces to the left of a sliding pointer. This
approach defines a system of interacting rigid clusters.

Consider modeling only those hydrogen bonds having an interaction strength greater
than some predefined cut-off, as distance constraints. This will divide the hydrogen
bonds into two groups, but a gap between strong and weak forces will not be found
in this case. Unlike covalent network glasses??, where there are no hydrogen bonds,
obtaining a clean separation in bond strength is not possible in proteins, because the
hydrogen bonds cover a broad range of interaction strengths. As a result, no justifica-
tion can be given for selecting a single set of hydrogen bonds to be modeled as distance
constraints.

The schematic diagram shown in Figure 1 represents a hierarchical approach that
we have adopted for selecting which interactions to model as distance constraints.
Naturally, the covalent bond-stretching and angular or bond-bending forces will be
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modeled as distance constraints. The nearest neighbor bond-stretching force defines
a nearest neighbor distance, and the angular or bond-bending force defines a second
nearest neighbor constraint. In addition, we introduce a pointer on an interaction
scale such that any hydrogen bonds interacting more strongly are modeled as distance
constraints, while those that have a weaker interaction strength are ignored. The
pointer is allowed to slide down the scale starting from an interaction strength just
below that of covalent bonding. As the pointer slides down, more and more hydrogen
bonds are included. This approach allows us to uncover various rigid substructures, that
will merge together as more crosslinks are added, albeit via weaker hydrogen bonds.
Intuitively, one expects that a large rigid cluster, consisting of many weak hydrogen
bonds, will not be as rigid as some internal parts that form rigid substructures involving
strong hydrogen bonds. Of course, the strongest rigid substructures within any large
rigid region will be the set of small rigid clusters defined by the covalent bonding. The
hierarchical approach of gradually selecting weaker and weaker hydrogen bonds allows
us to access the relative degree of stability (as a continuum measure) between different
regions in the protein. However, before we accomplish this task, we first construct a
quantitative measure for the degree of stability applied locally, rather than globally.

Van der Waals and Hydrophobic Forces

In proteins there are both short- and long-ranged non-bonding forces. Individually
these forces are generally weak, but collectively they are important in governing the
dynamics of a protein. For example, each van der Waals interaction is too weak to
model as a distance constraint, yet collectively the van der Waals interactions play
an important role in determining steric conformational constraints. The hydrophobic
force is a thermodynamic force that is generally regarded as a dominant contribution
that drives a protein to fold?, and it plays an important role in stablizing a protein
structure in the native state. It is not possible to apply distance constraints to model
the hydrophobic force, because it is an entropic force, depending on the ensemble of
configurations available to all atoms of the protein and solvent molecules.

During conformational changes, certain regions of the protein are essentially pre-
served as a rigid body. Our viewpoint is that the rigid clusters, defined by the covalent
bonding and the crosslinking hydrogen bonds, will interact with one another via the
weaker non-bonding forces as a system of coupled rigid bodies. Therefore, rather than
modeling the protein stucture as a system of interacting particles, we focus on the long
time dynamics where conformational changes are controlled by weaker, but collectively
important, forces acting between coupled rigid bodies.

The van der Waals and hydrophobic forces can be regarded as the most important
for driving and stablizing protein folds, because they will essentially determine the most
probable conformations having the lowest thermodynamic free energy. As a result, it
should not be surprising to experimentally observe thermodynamically stable regions
within the protein that are identified as floppy regions using a simple distance constraint
approach. These floppy regions locate low energy pathways that enable a protein to
explore different conformations. These pathways are important to facilitate domain
rearrangement or allow some local flexibility for the protein to successfully bind with a
ligand. Thus, we are focusing on the mechanical stability of a network of rigid clusters,
rather than the thermal stability of the protein as a whole.
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GENERIC RIGIDITY

A brute force method to identify all rigid clusters in a system with N atoms would
involve diagonalizing a dynamical matrix N2 times to check for redundant distance
constraints between all pairs of atoms?*. This leads to a polynomial time algorithm
that scales as O(N®). Other methods to check for redundant distance constraints,
involving the rigidity matrix for example, can be used instead of diagonalizing the
" dynamical matrix, but the final result will still lead to a polynomial time algorithm
that also scales as O(N®). Finding stressed regions requires an additional numerical
calculation involving a stress-strain relaxation of the network, using for example a
conjugate gradient method, that scales as O(N?).

The distance constraint approach will only be useful in as much as the calculation
for identifying floppy and rigid regions is fast and scales linearly or nearly linearly with
protein size. By considering the protein as a generic structure, one can deduce the
rigidity properties using concepts from graph rigidity2®. This is the contribution of this
paper.

A generic structure is one that has no special symmetries, such as parallel bonds or
bond angles of 180 degrees, that could create geometrical singularities?. Under these
conditions, the study of rigidity becomes much easier to deal with because the properties
of network rigidity depend only on the connectivity of the network, as determined by
an underlying graph. Although removing concerns about the particular coordinates of
atoms gives a great simplification conceptually, the calculational problem at hand is
still far from trivial.

There is a theorem by Laman?’ that states how generic rigidity of any two di-
mensional bar-joint network can be completely characterized by applying constraint
counting to all subgraphs. Applying Laman’s theorem directly leads to a combinatorial
calculation that scales as the exponential in the number of atoms within the network.
However, by applying Laman’s theorem recursively, a very fast and efficient algorithm
(the so called pebble game) has been constructed 283132 for identifying rigid clusters and
stressed regions. The pebble game uses computer memory that scales linearly with the
size of the network, and has a performance that scales in the worst case as O(N?) for
pathological networks, but in practice performs nearly linearly with N.

In three dimensional generic bar-joint networks, constraint counting over all sub-
graphs is known to fail in general. However, for the special class of truss frameworks,
the theorem of Laman can be generalized?® to three dimensions. Again constraint
counting over all subgraphs is enough to completely characterize generic rigidity. We
will model the microstructure of a protein using distance constraints that define a truss
framework, which is also called a bond-bending network.

Three Dimensional Bond-Bending Networks

Covalent bonding naturally defines bond distances and angles. As shown in Fig-
ure 2, the covalent bonding defines a graph, where each vertex represents an atom,
nearest neighbor distances represent central forces and next nearest neighbor distances
represent bond-bending forces. This type of graph is called a squared graph®, a truss
framework or a bond-bending network. The network connectivity is completely de-
scribed by the nearest neighbor central-force constraints, which are viewed as inducing
the bond-bending next nearest neighbor distance constraints. The only elementary
floppy element that exists within a bond-bending network is a hinge joint. Rotations
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Transform Squared Graph
Covalent bonded molecul Truss framework
Bond-bending network

Figure 2. Once a covalent bonded molecule or network is regarded as generic, the rigidity of the
network is completely determined by the connectivity of the underlying structure. A transformation
is made from a physical molecule to a mathematical graph, where vertices represent atoms, solid
lines represent distance constraints between nearest neighbor atoms associated with central forces
and dashed lines represent distance constraints between next nearest neighbor atoms associated with
bond-bending forces. The graph is of a special kind, called a squared graph. This structure is also
referred to as a truss framework or bond-bending network.

through a dihedral angle about the axis of a central-force constraint is a priori possible,
but may be locked because of the network properties.

As shown in Figure 3 the hydrogen bond is modeled in a similar way to a covalent
bond with generic geometry, in which the donor, hydrogen and acceptor atoms are
not co-linear. Typically, each hydrogen bond will introduce three distance constraints,
corresponding to one central force between the hydrogen and acceptor atoms and two
bond-bending forces associated with the hydrogen and acceptor atoms. If an acceptor
atom is involved in n, hydrogen bonds, there will be (n), — 1) additional bond-bending
force constraints between hydrogen-acceptor-hydrogen atoms. This particular model for
a hydrogen bond is mathematically convenient because it allows the protein structure
to be described as a bond-bending network. Physically, the model is also reasonable
because hydrogen bonds are almost never linear and the three dihedral angle degrees of

Figure 3. A diagram showing a hydrogen bond involving a donor and acceptor atom taken here as
nitrogen and oxygen respectively. It is modeled as three generic distance constraints, consisting of
a nearest neighbor central-force constraint shown as a thick solid line, and two next nearest neigh-
bor bond-bending force constraints shown as dashed lines. Each constrained hydrogen bond is also
associated with three a priori rotatable dihedral angles indicated by the arrows.
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freedom associated with the hydrogen bond allows it to be relatively flexible. Although
modeling the hydrogen bond to be more or less constrained is easy to do, we consider the
model in Figure 3 to strike a good balance between neither over- nor under-representing
the effectiveness of a hydrogen bond.

The 3D Pebble Game

At the heart of the FIRST computer program is the 3D pebble game algorithm
that is constructed in a very similar way as the two dimensional pebble game2829:31:32,
Here, three pebbles, representing three translational degrees of freedom, are assigned
to each vertex in the graph. For each independent distance constraint between two
vertices, a pebble from either one of the incident vertices must be used to cover the
constraint. Pebbles associated with vertices are called free pebbles, and they represent
the independent degrees of freedom remaining within the network. Each independent
distance constraint uses up one independent degree of freedom. Then the following
covering rule is applied: once an independent constraint is covered by a pebble, it must
always remain covered by any of the pebbles associated with either of its incident sites.
Rearrangement of pebbles throughout the network is possible provided this covering
rule is not violated.

Figure 4. A diagram showing the final pebble covering of a simple network. The open big circles
represent free pebbles that are placed directly on vertices and denote free degrees of freedom available
to the network. The filled big circles represent pebbles that are covering a distance constraint, and are
placed directly on the edges of a graph. The pebble covering is not unique, because pebbles can be
rearranged according to a few simple rules as explained in the text. Here, we show an example of how
an elementary pebble exchange works, as indicated by the two arrows. A free pebble can be moved
on to a covered edge (off from a vertex) provided a corresponding pebble, which is presently covering
the edge and is associated with the neighboring vertex, is moved off (on to a vertex).

In Figure 4 an example of a pebble covering is given for the graph shown in Figure 2
(rotated by 45 degrees). The pebble covering is a convenient way to represent a dynam-
ically changing directed graph? facilitated by the rearrangement of pebbles through a
series of elementary pebble exchanges. Note that if another constraint is added between
a pair of vertices within the six fold ring, it would be found to be redundant, because
there are not enough free pebbles in this region to cover the constraint. This physically
corresponds to the fact that the six fold ring is generically rigid. ;
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The 3D pebble game is a recursive algorithm like its 2D counterpart. The network
is built up by placing one distance constraint at a time. An essential feature of the 3D
pebble game is that each central-force distance constraint associated with vertices v,
and v, must have associated with it angular (i.e. second nearest neighbor) constraints
around both vertices v; and v,. For each new independent distance constraint that is
introduced, pebbles are rearranged in a way to test if the new distance constraint is
independent or not. If the new distance constraint is found to be independent, it is then
covered, otherwise it is not covered. This process continues until all distance constraints
within the network have been completely placed in the network. The algorithm can be
sketched in the following way:

1. Place a central-force distance constraint between vertices v, and v, as appropriate
and as described in the previous sections.

2. Rearrange the pebble covering to collect three pebbles on vertex v;.

3. Rearrange the pebble covering to collect the maximum number of pebbles on
vertex v while holding the three pebbles at vertex v;.

4. If the number of pebbles on vertex v, is two, the distance constraint is redundant.
Otherwise, three pebbles reside at vertices (v, and v,).
Continue to rearrange the pebble covering:

(a) Hold the three pebbles on both vertices v; and v,.
(b) For each neighbor of vertex vp: Attempt to collect a pebble.

(c) If for any neighbor of vertex vy a pebble cannot be obtained, then that
distance constraint is redundant.

5. If the distance constraint is not redundant, cover it with a pebble from vertex v,.

Unlike the 2D pebble game, the distance constraints cannot be placed in any ran-
dom order. There is an additional rule about the placement of distance constraints. The
first distance constraint that is introduced must correspond to a central-force constraint,.
After each central-force distance constraint is placed, all of its associated induced an-
gular or bond-bending constraints (next nearest neighbor distance constraints) must
be placed before another central-force constraint can be placed. Within this restric-
tion, the order of placing either central force or the induced bond-bending constraints
is completely arbitrary. The restriction on the order of placing distance constraints
nearly maintains the form of the network to be that of a truss framework throughout
the building process. The entire network is a truss framework, except in the local region
where the additional central-force bond is initially placed. The network is restored to a
truss framework everywhere, after all the induced bond-bending constraints are added.
This local deviation from a truss framework does not create any pivot points or implied
hinge joints. Therefore this restriction on recursively placing constraints is sufficient?
for combinatorial constraint counting to remain valid in characterizing generic network
rigidity.

Finally, torsional constraints for the peptide and resonant bonds are fixed by third
nearest neighbor distance constraints. These are most conveniently placed after the
central and bond-bending distance constraints have been placed. No induced bond-
bending constraints are associated with the torsional constraints, because these are
auxiliary distance constraints for locking in certain dihedral angles.
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After all these distance constraints have been placed, the number of free pebbles
remaining on the vertices gives the total number of degrees of freedom required to
describe the motion of the network. This includes the six trivial rigid body translational
and rotational degrees of freedom of the whole network. The free pebbles can be
rearranged, but are restricted to certain regions because of the rule for pebble covering.
For example, no more than six free pebbles can be found within a rigid cluster. Based
on the location and number of free pebbles throughout the network, one can identify
overconstrained regions, rigid clusters and underconstrained regions.

Identifying Overconstrained Regions

A redundant constraint is identified when a failed pebble search occurs. A failed
pebble search consists of a set of vertices that have no extra free pebbles to give up.
This physically corresponds to the region of vertices and distance constraints that
predefines the length between a pair of vertices. As we are considering generic networks,
placing a distance constraint between this pair of vertices will cause a length mismatch.
Physically, this means that the bond lengths and angles within this region of the failed
pebble search will become distorted as this region will be internally stressed. Thus,
by recording the failed pebble searches, which we call Laman subgraphs as in two
dimensions, we automatically identify the overconstrained regions.

Overconstrained regions will always consist of closed loops. As distance constraints
are added to the network, more overconstrained regions will be found, and generally
these regions will overlap. Overlapping overconstrained regions merge together into
a single overconstrained region. As these networks are generic, stress will propagate
throughout such a merged set of overconstrained regions.

A subtle point that does not occur in two dimensions is that stress can propagate
from one floppy region to another in three dimensions. In bond-bending networks, the
effect is a trivial propagation of stress between neighboring atoms that are both four
(or more) coordinated. This occurs because a four coordinated atom has six angular
constraints, but only five are independent. As a result, every four (or more) coordinated
atom is part of at least a locally stressed region consisting of itself and its neighbors.
The loops are formed by central-force and bond-bending constraints.

As an example, consider a long floppy chain constructed such that along the main-
chain, there are carbon atoms, each connected to two other carbon atoms along the
mainchain, and two hydrogen atoms forming dangling ends, so that each carbon atom
has four neighbors. Although the chain is floppy, having a rotatable dihedral angle
between each pair of carbon atoms in the mainchain, it will carry stress from one end
to the other! Again the reason for this effect is in modeling the local chemistry of a
four coordinated covalently bonded atom with six angular constraints. By explicitly
monitoring this type of overconstrained region, we can include or exclude this effect.
This effect can be excluded by removing any one of the six angular constraints at each
four fold coordinated atom in the model. For the remainder of this article we will not be
concerned with this type of locally induced stress. Instead, we are interested in network
induced overconstrained regions caused by loops formed by central-force constraints.

Rigid Cluster Decomposition

The vertices within each rigid cluster are divided into two types. A vertex is clas-
sified as a bulk vertex when all of its neighboring vertices also belong to the samie rigid
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cluster, otherwise it is classified as a surface vertez. Thus a surface vertex has at least
one neighbor belonging to a different rigid cluster than itself. Isolated vertices and the
vertices within dimers are regarded as bulk vertices. This is a very useful classification
scheme because in general a vertex can belong to more than one rigid cluster simulta-
neously, yet a bulk vertex can be assigned to one and only one rigid cluster. A unique
rigid cluster labeling scheme can be constructed by labeling only the bulk vertices. This
labeling scheme for rigid clusters is appropriate to three dimensional bond-bending net-
works’?®, where it is possible to take advantage of some special properties. In general
this labeling scheme will not work. For example, this labeling scheme cannot be used
at all in two dimensional networks?331:32,

Each rigid cluster consists of a set of bulk vertices, all having the same cluster
label, and a set of surface vertices all having a different cluster label than the bulk
vertices. Any non-bulk vertex that is nearest neighbor to a bulk vertex for a particular
rigid cluster is actually a surface vertex for that rigid cluster. There are two additional
Properties about the rigid clusters within a bond-bending network?® that will be needed
here.

P1 For each vertex, vy, all its neighbors are automatically mutually rigid with re-
spect to one another as well as with vertex v, itself because of the bond-bending
constraints.

P2 All vertices within a rigid cluster are connected via a path of central-force con-
straints.

Using the above properties, an algorithm to obtain the rigid cluster decomposition
within bond-bending networks is given as:

1. Initialize rigid cluster counter. Label all vertices null.

2. For each vertex, vy, not already associated with a rigid cluster:

a}) If an isolated vertex: Increment counter and label vertex.

If vertex is one fold coordinated; return to (2).

(c

(a)
(b) If the vertex belongs to a dimer: Increment counter, label both vertices.
)
(d)

Rearrange pebbles: Collect 3 pebbles on vertex v, 2 pebbles on its lst
neighbor, v,, and 1 pebble on its 2nd neighbor, v;.

(e) By property P1, use vertices {v;,vz,v3} as a rigid base, and place them in
a stack defining the rigid cluster.
(f) By property P2, use a breadth first search® via nearest neighbors, {Vnew},
to grow the rigid cluster stack to completion.
i. For each vertex vne,: Rearrange pebbles attempting to collect a pebble
while holding the six pebbles on the rigid base.
ii. If attempt fails: Include new vertex in the rigid cluster stack.

(8) Increment cluster label: Label all bulk vertices within the rigid cluster.
After the above algorithm is finished, every bulk vertex will have a cluster label assigned

ranging from 1 to the number of rigid clusters in the network. One fold coordinated
vertices are regarded as bulk vertices.
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Identifying Underconstrained Regions

After the rigid cluster decomposition is made, locating hinge joints is an easy task.
A hinge joint can never occur about a bond-bending distance constraint?®, To find
all the hinge joints within the network, one needs to check the two incident vertices
associated with each central-force distance constraint. If the two vertices have different
cluster labels, then a dihedral rotation is possible and the central-force constraint is a
hinge joint, otherwise the dihedral angle motion is locked, as it is part of a rigid cluster.

The number of hinge joints will generally be more than the number of residual in-
ternal degrees of freedom in the network. This means that not all the rotatable dihedral
angles associated with the hinge joints are independent. We call a hinge joint indepen-
dent if its dihedral angle can be changed without affecting other dihedral angles within
the network. Collective motions will take place in underconstrained regions within the
protein. It is convenient to partition hinge joints into distinct underconstrained regions,
which may include only one independent hinge joint.

Let the set of dihedral angles associated with the hinge joints define a reference
set of internal coordinates, not all of which are independent. We will partition the
independent degrees of freedom of the network into subsets, which correspond to un-
derconstrained regions. In a similar way that there are redundant constraints within
overconstrained regions, there are floppy modes within underconstrained regions. Phys-
ically, collective motions can occur within a particular underconstrained region without
affecting internal coordinates outside of the region. The underconstrained regions are
identified by attempting to specify a value for each dihedral angle. Specifying a dihe-
dral angle is equivalent to placing an external torsional constraint to lock in this choice
of angle. Independent externally imposed torsional constraints represent independent
degrees of freedom available to the system, while redundant externally imposed con-
straints indicate the angle is predetermined as part of a collective motion. Therefore,
the algorithm for identifying the underconstrained regions is given by:

1. Initialization: Record null Laman subgraphs by regarding all previously identified
redundant constraints within the network as not present.

2. Continue to play the pebble game by placing a third nearest neighbor distance
constraint to lock the dihedral angle for each hinge joint in the network.

3. After completion: The set of newly formed Laman subgraphs identifies the un-
derconstrained regions.

After all torsional constraints are placed on each hinge joint, a completely con-
nected network will become totally rigid having six degrees of freedom that are repre-
sented by six remaining free pebbles. The Laman subgraphs within this bond network
now define the underconstrained regions, which consist of loops involving central-force
bonds. The number of independent dihedral angles within an underconstrained region
is given by the number of torsional constraints covered by a pebble. Independent hinge
joints are associated with a covered torsional constraint not belonging to a Laman
subgraph.

FLOPPY INCLUSION AND RIGID SUBSTRUCTURE TOPOGRAPHY

A large amount of detailed information about the mechanical stability of a protein
under a fixed set of distance constraints becomes available from a FIRST analysis. All
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overconstrained regions, rigid clusters and underconstrained regions are determined.
We discuss in detail the output of such a FIRST analysis for a hand made 32 atom
example shown in Figure 5, which ties together the discussion of the previous section.
In addition to partitioning a structure into different types of regions, a continuous
measure for the degree of stability is introduced and is worked out for the network
shown in Figure 5. The FIRST analysis is then applied to protein structure, where the
floppy inclusion and rigid substructure topography is described by a one dimensional
representation in terms of what we define as a stability indez.

Figure 5. A simple hand made 32 atom network. Each atom is labeled from 1 to 32. Single lines
between labeled atoms represent central-force distance constraints that have a priori rotatable dihedral
angles, while the double lines represent double bonds where the dihedral angle is locked.

3D Graphical Display

Constructing a three dimensional graphical display for the different types of me-
chanical regions amounts to devising a systematic labeling scheme. We take our basic
set of reference labels to be the atom numbers. For the network shown in Figure 5, it is
possible to obtain the complete solution for the floppy inclusion and rigid substructure
topography by inspection. Each part of the solution will be discussed in turn.

Recall that overconstrained regions are identified within the 8D Pebble Game as
a result of failed pebble searches. Each time a failed pebble search is encountered a
Laman subgraph is identified, which contains more distance constraints than needed to
make that region rigid. A convenient labeling system for identifying Laman subgraphs
is to initially assign each atom a Laman subgraph label. The atom numbers are used
as the initial set of Laman subgraph labels.

When a Laman subgraph is uncovered from a failed pebble search, all atoms found
within are re-assigned the lowest Laman subgraph label encountered. This allows
Laman subgraphs to naturally merge together. Since Laman subgraphs (representing
overconstrained regions) consist of loops, stress will reside in the central-force bonds
connecting pairs of atoms having the same Laman subgraph label. Loops of atoms with
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Figure 6. The FIRST analysis for internally stressed regions. Each atom is assigned a Laman
subgraph label. The thick solid black lines show a network induced overconstrained region where
there will be internal stress. In addition, there are two localized regions that are internally stressed
(highlighted using thick grey lines) each associated with the presence of a four-coordinated atom.

the same Laman subgraph label define a particular overconstrained region. As shown
in Figure 6 only one network induced overconstrained region is present, consisting of a
five fold ring with one redundant constraint. Since the incident atoms about all other
central-force bonds are assigned different Laman subgraph labels, no network induced
stress is present anywhere else.

Induced stressed regions, localized around four (or higher) coordinated atoms, can
also be monitored. Four coordinated atoms, such as atoms 6 and 15, produce a local
Laman subgraph with one redundant constraint within a set of edge sharing loops con-
sisting of the central and bond-bending constraints associated with the four coordinated
atom and its nearest neighbor atoms. The Laman subgraph labeling scheme works for
both kinds of induced stressed regions, where the former is identified by checking the
atom coordination number. We eliminate this effect by removing one of the six angular
constraints, chosen arbitrarily, at each four fold coordinated site.

The coloring of rigid clusters is associated with the bulk atoms, each assigned a
particular color according to its cluster label. The assignment of colors is restricted by
the requirement that two nearest neighbor bulk atoms having different cluster labels
must have different colors. As a general property of bond-bending networks, each
central-force bond belongs to either two rigid clusters when it is a hinge joint?°, or one
rigid cluster otherwise. Therefore, the first half of each central-force bond stemming
from a bulk atom is half colored. A central-force bond is completely colored only when
both incident atoms have the same cluster label. As a result, only hinge joints appear
as half colored bonds.

Empirically we find that a complete color assignment is possible using as little
as four colors, although we generally use more colors by having a dark and bright
set of colors to denote rigid and floppy regions respectively. The relationship between
uniquely coloring the rigid cluster decomposition and the chromatic coloring of a graph,
such as the famous four color problem on planar graphs®3 has not been investigated.

In Figure 7, we show the rigid cluster decomposition of our example 32 atom
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Figure 7. The FIRST analysis for the rigid cluster decomposition. Each atom is assigned a cluster
label. Each rigid cluster is assigned a color, with the constraint that neighboring clusters must be
assigned a different color. Half colored bonds represent hinge joints.

network. Here we are able to completely color the rigid cluster decomposition using only
two colors (ie. black and grey). Comparing Figure 5 with Figure 7 indicates that rigid
cluster #1 consist of 14 atoms (bulk atoms {1,2,3,4,5,6,15,16,17,18} and surface
atoms {7,14,19,28}), rigid cluster #2 consist of 3 atoms (bulk atom 7 and surface
atoms {6,8}), rigid cluster #5 consist of 4 atoms (bulk atoms {10,11} and surface
atoms {9, 12}), etc. Within rigid cluster #1, only the five fold ring is overconstrained
as shown in Figure 6 while the seven fold ring is isostatically rigid. Each half colored
bond identifies a hinge joint where its dihedral angle can be rotated, but this does not
indicate the inter dependence of rotating a set of dihedral angles in the floppy regions.

Each underconstrained region is displayed with a unique color to indicate an inter-
dependent set of hinge joints. The labeling scheme is applied directly to the hinge
joints, where each hinge joint is initially assigned a distinct label representing the un-
derconstrained regions. We denote the hinge joint between atoms ¢ and j as H;;. As
external torsional constraints are placed on each hinge joint, all H;; found within a
failed pebble search are re-assigned the lowest common label encountered. Therefore,
underconstrained regions merge together whenever failed pebble searches have over-
lapping H;;. Only central-force bonds that were originally hinge joints (labeled by
the set {H;;} and actually are hinge joints within the protein) are colored. Therefore,
underconstrained regions are generally not contiguous.

In Figure 8 it can be seen that the 32 atom example network has two large under-
constrained regions and three other underconstrained regions, each consisting of one
independent hinge joint. The left underconstrained region consist of 8 hinge joints,
each colored black, while it has only two independent dihedral angles indicated by the
circular arrows. Comparing with Figure 7 it is seen how intermediate rigid clusters
#1 and #5 cause the underconstrained region to be non-contiguous. Similarly, the
underconstrained region on the right is also non-contiguous. It consist of 10 hinge
joints, shown in grey, while it has four independent dihedral angle rotations. The three
independent hinge joints are indicated only by circular arrows.
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Figure 8. The FIRST analysis for the underconstrained regions. Each atom is numbered from
1 to 32. Two underconstrained regions are found. The black thick lines on the left represent one
underconstrained region consisting of two floppy modes extending over eight hinge joints. The grey
thick lines on the right represent another underconstrained region consisting of four floppy modes
extending over ten hinge joints. The nine arrows represent internal independent dihedral angles. All
central-force bonds that are not part of the two identified underconstrained regions or have a circular
arrow have locked dihedral angles. Three independent hinge joints are also shown in the section from
16 to 32.

The independent dihedral angles within an underconstrained region correspond
to free pebbles in the the 3D pebble game. The choice of which hinges are taken
as independent is arbitrary, and is analogous to choosing which bonds are redundant
within an overconstrained region.

In general, rigid clusters will subdivide a floppy region into multiple undercon-
strained regions, where independent collective motions can take place. Figure 8 shows
an example of how rigid cluster #1, shown in Figure 7, partitions free degrees of free-
dom into two localized regions. It is seen that once the two independent dihedral
angles are specified in the underconstrained region on the left, the relative position
of atoms {8,9,10,11,12,13} are all fixed relative to rigid cluster #1. The specifi-
cation of these two angles, however, has no affect on the relative position of atoms
{20, 21, 22,23, 24, 25, 26,27} within the underconstrained region on the right. Notice
that if atoms {1, 2, 3} were removed from the network, rigid cluster #1 would fall apart.
Moreover, the two underconstrained regions would merge together with the seven fold
ring to form a single underconstrained region with 25 hinge joints and 11 independent
dihedral angles. This illustrates how a local structural change can have important
consequences to the overall mechanical stability of the network.

Quantifying the Degree of Flexibility

With the above system of coloring, we are able to make a 3D multi-color map
for overconstrained regions, the rigid cluster decomposition and the underconstrained
regions. Although it is insightful to view the three dimensional multi-color rendering
of these regions, one must exercise caution not to be mislead about the stability within
a protein.
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Modeling only a few additional hydrogen bonds as distance constraints will often
make some floppy regions (or parts within) rigid. Likewise, the removal of distance
constraints associated with just a few hydrogen bonds will sometimes make some rigid
regions break apart like a house of cards. Modeling just a few more or less hydrogen
bonds as distance constraints can sometimes dramatically change the mechanical sta-
bility of a protein. However these observed changes in the 3D graphical displays do not
necessarily reflect the actual change in mechanical stability that is occurring physically.

A floppy region consisting of many interconnected rigid clusters may define a col-
lective motion having only a few independent degrees of freedom. This floppy region,
although underconstrained, would be quite stable mechanically as it is nearly rigid. An
isostaticly rigid region is not expected to be as stable as an overconstrained region. For
this reason a continuous index of stability is useful. As the hydrogen bond selection
criteria, is relaxed using a hierarchical protocol, the observed changes in the mechanical
stability of the protein can be tracked in a continuous fashion.

The total number of floppy modes in a protein, denoted by F, corresponds to the
number of internal independent degrees of freedom. To obtain F', the six trivial rigid
body degrees of freedom must be subtracted out from the total number of independent
degrees of freedom. For purposes of simplifying the discussion, it has been assumed
that all atoms in the protein are connected via covalent bonding. The global count
of the number of floppy modes gives a good sense of intrinsic flexibility. However, a
better measure for the degree of floppyness can be obtained by tracking how the total
number of floppy modes are spatially distributed throughout the protein. In particular
we are interested in locating underconstrained regions and the number of floppy modes
contained within each of these regions.

Regions containing more constraints are regarded as being more stable than regions
with less constraints. Overconstrained regions have more constraints than necessary
to be rigid, and therefore are considered to be more stable. A global count for the
number of redundant constraints, denoted by R, gives a sense of the overall stability
of a protein. However, a better measure for the degree of stability can be obtained by
tracking how the total number of redundant constraints are distributed throughout the
protein. In a similar way as done with the floppy modes, we will be interested in where
the overconstrained regions are located and count the number of redundant constraints
present in each region.

We will define a quantity s;, as a stability index characterizing the i-th central-force
bond in the protein. Let Hy and Fj, respectively denote the number of hinge joints and
the number of floppy modes (internal independent degrees of freedom) within the k-th
underconstrained region. Let C; and R; respectively denote the number of central-force
bonds and the number of redundant constraints within the j-th overconstrained region.
Combining a quantitative measure for both the degree of floppyness and stability as-
sociated with the distribution of floppy modes and redundant constraints respectively,
the definition for the stability index is given by:

Zf% in an underconstrained region

s; =< 0 in an isostatically rigid region (1)
B . . .
gr inan overconstrained region.

When the i-th central-force bond is a hinge joint, the stability index is defined
to be a negative quantity with magnitude given by the the number of floppy modes
divided by the total number of hinges within the underconstrained region. The number
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of floppy modes correspond to the number of independent dihedral angle rotations that
can be made within the underconstrained region. Since the number of independent
dihedral angle rotations must be less than or equal to the number of hinge joints, the
stability index can never be less than —1. For an independent hinge joint the stability
index works out to be —1. Furthermore, the stability index for a hinge joint must
always be less than zero because there will always be at least one floppy mode within
an underconstrained region.

When the i-th central-force bond is not a hinge joint, it must be part of a rigid
cluster, although it may or may not be part of an overconstrained region. If the central-
force bond is within an overconstrained region, the stability index is assigned a positive
value given by the number of redundant constraints divided by the total number of
central-force bonds within the region. Although there is no useful upper bound for the
stability index it rarely goes above unity and generally stays below 1/2.

A stability index of zero is assigned to central-force bonds within isostatic rigid
regions, because this is the limiting value for an underconstrained region that is nearly
rigid and for an overconstrained region that is nearly isostatic. The intrinsic flexibility
of a protein can be studied using the stability index within a one-dimensional repre-
sentation. Here, the stability index for central-force bonds along the mainchain of a
protein, where a plot is made against residue number along the protein sequence, gives
a good sense for the mechanical stability.

The number of independent degrees of freedom and redundant constraints within
the protein vary gradually as the number of hydrogen bond constraints is varied. Like-
wise, the stability index also varies gradually when hydrogen bond constraints are added
or removed. It is worth mentioning that two independent sum rules result directly from
the definition of the stability index. It follows that adding the stability index over all
hinge joints sums to the negative of the total number of floppy modes, while summing
over all non-hinge joints results in the total number of redundant constraints.

As a simple example, consider a single n-fold ring of atoms that are connected by
covalent bonds. From simple constraint counting, the number of degrees of freedom
less the number of constraints is given by F' = n — 6. The number of hinge joints (and
central-force bonds) is simply given by n. Therefore the stability index for a n-fold ring
is given by

8 = -6—;—2 for each central-force bond in a n-fold ring. (2)

Notice that as the ring becomes very large, the stability index goes to the limit of —1,
as each dihedral angle is nearly independent and is almost as flexible as a linear chain.
For a six fold ring, the stability index is zero, indicating that the generic ring structure
is isostatically rigid. For a three fold ring, the stability index works out to be +1 and
is highly overconstrained. Note that for the case of a n-fold ring, the stability index is
bounded between -1 and 1.

As another example, consider once again the hand made 32 atom network. From
Figure 8 the assigned value for the stability index to each hinge joint within the black
and grey underconstrained regions are —1/4 and —2/5 respectively, indicating that
the underconstrained region on the right (grey) is less stable, or more floppy. Each
independent hinge joint has a stability index of —1. From Figure 6 the stability index
for each central-force constraint within the network induced overconstrained region is
1/5. All other central-force bonds, including the resonant bonds, have a stability index
of zero.
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The Alpha Helix

The alpha helix is a secondary structure'® that is frequently found in proteins,
and they are generally regarded as rigid substructures. The structure of an alpha
helix is that of a helix with mainchain hydrogen bonds forming between every fourth
consecutive residue as shown in Figure 9. Each turn, through 27 along the alpha helix
consists on average of 3.6 residues.

Figure 9. An example of an alpha helix made from 14 glycine residues. The hydrogen bonds are
shown as thin black dashed lines.

We will analyize the intrinsic mechanical stability of an alpha helix using our
distance constraint approach. Underconstrained, isostaticly rigid and overconstrained
regions can easily be calculated because of the linear repeating pattern of the mainchain
hydrogen bonds. The stability index will be worked out for an alpha helix made up
of entirely glycine residues because we are interested in understanding the effects of
the crosslinking hydrogen bonds along the mainchain. The same effects will be present
for any alpha helix substructure within a protein regardless of its constituent residue
types, although other rigiditifying affects may result from (additional) sidechain or end
cap hydrogen bonding.

The internal independent degrees of freedom (floppy modes) and redundant con-
straints will be counted explicitly by hand. The distance constraints associated with
the covalent bonding between atoms along the mainchain allow two free dihedral angles
within each residue as shown in Figure 10. Recall that the dihedral angles associated
with peptide bonds are locked by third nearest neighbor distance constraints. The two

“free dihedral angles are conventionally referred to as the {¢;,%;} angles within the i-th
residue. The number of floppy modes for the alpha helix is given by

Coiitiis =

Figure 10, A simple illustration for the mainchain of a protein. Double lines represent the peptide
bond for which we do not allow any dihedral rotation. There are two a priori free dihedral angles
denoted by ¢ and v respectively per residue. In our simple alpha helix, all residues (denoted by R)
are glysine, which is equivalent to replacing R by a hydrogen atom.
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F(n)=(6+2n) —3N,—6 (3)

where (6 + 2n) is the number of degrees of freedom for n residues, 3N, is the number
of crosslinking distance constraints (three per hydrogen bond), and the 6 trivial rigid
body motion degrees of freedom are subtracted out.

The regular repeating pattern of the alpha helix gives N, = n — 4 hydrogen bonds
for n > 4 residues. Since we want the alpha helix to have at least one turn, we will only
consider an alpha helix consisting of four or more residues. The hydrogen bond pattern
does not crosslink the very ends of the alpha helix. As a result, two independent dihedral
angle motions are allowed at both ends of the alpha helix regardless of its length.
The region that is of interest to us is along the main body of the helix. Depending
on the number of residues in the alpha helix, the region of interest will form one
underconstrained, isostatically rigid, or overconstrained region.

The two independent hinge joints at each end of the helix do not belong to the
region of interest and must be accounted for separately. To prove that the main body
of the alpha helix does not break into multiple regions (assuming all hydrogen bonds
are present) requires one to perform an all subgraph constraint counting exercise either
manually or with the aid of the FIRST program. Since the structure is quite regular,
one can prove this by combining inspection with mathematical induction as an alpha
helix is built up one residue at a time.

A global count in the number of floppy modes within a n-residue alpha helix is given
by F(n) =12 — n where Eq. 3 has been used. However, there are five distinct regions
within the alpha helix, consisting of the two hinge joints at each end with independent
dihedral angles and the single region of interest within the main body. Therefore, the
number of floppy modes within the main body of a n-residue alpha helix, F,(n), is
given by:

: > 0 for n < 8 an underconstrained region
F,(n)=8—-n =0 for n =8 an isostaticly rigid region 4)
' < 0for n > 8 an overconstrained region

The rigid cluster decomposition is shown in Figure 11 for a seven residue alpha
helix. From Eq. 4 the main body of the alpha helix is floppy with one floppy mode,
describing a twisting motion along the axis. In this floppy region there are 21 intercon-
nected rigid clusters that form an underconstrained region consisting of nineteen hinge
joints, which is also shown in Figure 11. For a n-residue alpha helix, the number of
hinge joints in the region of interest can be counted as

Hy=2n—-4+3N, = 5n—16 (5)

where there are 2n hinge joints consisting of the ¢ and 1 rotatable dibedral angles in
total. Four hinge joints correspond to the two independent hinge joints at each end of
the helix, and recall there are 3 dihedral angles associated with each hydrogen bond as
shown in Figure 3.

The stability index for each of the rotatable dihedral angles within the main
body of the alpha helix (ie. not those associated with the peptide bond) is given
by sq = —FafHs = —1/19. The stability index associated with each of the central-
force bonds in the peptide bond is zero because the third neighbor distance constraint
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Figure 11. The rigid cluster decompositioh (right pane-l.) and the underconstrained region (left panel)
along the main body of an alpha helix of 7 residues is shown.

used to lock the dihedral angle makes a small isostatic rigid cluster. A one dimensional
representation of the degree of flexibility along the mainchain of the seven residue al-
pha helix is shown in Figure 12. A topological representation of the corresponding
rigid cluster decomposition and the main body underconstrained region is also shown.
Unlike the 32 atom example network worked out earlier, a protein structure can be un-
folded into a linear covalent polymer chain and sequenced according to residue in a one
dimensional fashion, otherwise known as the primary structure. Therefore, in Figure
12 we plot the degree of flexibility for the central-force bonds along the mainchain of
the protein structure against residue number.
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Figure 12. The stability index is shown along the mainchain of the 7 residue alpha helix. To show
the correspondence clearly, a schematic diagram for the rigid cluster decomposition (black, grey and
light grey regions) and the single underconstrained region (outlined by solid lines) are also shown.

From Eq. 4 it is seen that the main body of the alpha helix will be rigid with
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(n — 8) redundant constraints for an alpha helix having eight or more residues. In this
region, the total number of central-force constraints is given by

Co=Hy+(n-1) = 6n-17 (6)

where H, (from Eq. 5) is used because it represents the number of central-force con-
straints associated with a priori rotatable dihedral angles, and the addition of (n — 1)
corresponds to the number of (non-rotatable) peptide bonds between residues. Unlike
within underconstrained regions where hinge joints are counted, we count all central-
force bonds within a rigid region. Using Eq. 1, the stability index for each central-force
bond associated with the {#, 1} angles along the mainchain and within the main body
of a n-residue alpha helix works out to be

a2 ford<n<8
S"‘(n):{ 5-7‘;— for n > 8. (7)

61—

= =y

It is worth noting that for long alpha helices (ie. in the limit n — oco), the stability
index approaches 1/6 corresponding to one redundant constraint per residue.

Lysine/Arginine/Ornithine-Binding Protein

The lysine/arginine/ornithine binding protein is a bacterial periplasmic protein
found in Salmonella typhimurium, and is responsible for the transport of various sub-
strates (or ligands) such as lysine from the periplasm to the cytoplasm?®. The X-ray
crystal structures of the lysine binding protein in the closed conformation with lysine
bound and in its open conformation without a ligand are known?®® to within 1.9 A. This
protein has two globular domains connected by a double flexible linkage, which allows
a large-scale hinge-type (“clam shell”) movement of its two domains®!4. Each globular
domain essentially define the two halfs of the “clam shell” separated by loop hinges
as defined by the crystallographers®*. Domain 1 contains residues between 1-87 and
195-237, consisting of parts of the N- and C-termini. Domain 2 contains all residues
between 94-181.

By comparing the ¢ and ¢ mainchain dihedral angles in the protein structure in
its closed and open conformations, given in the Ilst and the 2lao PDB files, (from the
Brookhaven Protein Data Bank? of atomic resolution macromolecular structures) it
is ascertained that the large-scale domain motion is localized to a few dihedral angles
within a flexible linkage consisting of two loops®®. From kinetic studies®®, the time scale
for the opening and closing of the structure is found to be 10 nanoseconds without the
substrate and 10 miliseconds with the substrate — a difference of six orders of magnitude.
We selected this protein as an initial test case in applying FIRST to predict intrinsic
flexibility.

Hydrogen atoms are generally not resolved in a protein structure derived from
crystallography, because their low electronic densities do not contribute much to the
scattering of X-rays. As we consider generic networks, the exact position of the hy-
drogen atoms is not important. However, the placement of hydrogen atoms is useful
for identifying hydrogen bonds with good geometry3” within the protein structure.
Therefore, we use the Whatlf software3 for geometrically correct optimal placement
of hydrogen atoms for hydrogen bonding.
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Once the hydrogen atom positions are explicitly provided, we model hydrogen
bonds as distance constraints within the bond network analyzed by FIRST, provided
they satisfy the following criteria:

1. The hydrogen bond is intra-molecular.
2. The donor-hydrogen-acceptor angle must be greater than 120 degrees.

3. Either the donor-acceptor distance is less than 3.5 A or the hydrogen-acceptor
distance is less than 2.5 A.

It is possible to consider additional hydrogen bonds that form between the protein and
solvent (water) molecules, and between the protein and other ligands. However, here
we will focus on the effect of intra-protein hydrogen bonds on rigidity.

In Figures 13 and 14, we show the one dimensional representation for the intrinsic
flexibility of the lysine-binding protein in the closed conformation, with lysine bound,
and in the open conformation without lysine. In both figures, the stability index
associated with the {@;,1;} angles in each residue along the mainchain is plotted against
residue number. The one dimensional representation alone gives a clear overview of the
rigid and fiexible regions, and can be compared directly with the three-dimensional
molecular graphics of those regions.

It can be seen that the gross features in mechanical stability of each conformation
are the same. Most of the rigid substructures and underconstrained regions identified
in the two conformations correspond to one another.

Domain 1, consisting of both the N- and C-terminus of the lysine binding protein,
is seen to be mechanically more stable than domain 2 consisting of residues between
94 to 181 (between the inner two vertical dashed lines). Both conformations show that
domain 1 is almost completely rigid and made up almost entirely by rigid cluster R1.
Domain 2 contains a large underconstrained region (labeled as U2) with several rigid
substructures (labeled as R2, R3, ... R8) that are mainly alpha helices.

For the same hydrogen bond criteria, it is seen that the intrinsic flexibility is greater
for domain 2 than that for domain 1. The large underconstrained region (labeled as U2)
consists of the known double flexible linkage, residues 88-93 and 182-194, in addition to
a beta sheet in domain 2. Thus, domain 2 apparently does not have enough sidechain
hydrogen bonding to rigidify the beta-sheet together with other rigid substructures to
form a large rigid domain. Instead, the various rigid substructures move collectively.
The underconstrained region U2 decreases in size as the hydrogen bond selection criteria
are relaxed and more hydrogen bonds are modeled as constraints. Eventually, the beta-
sheet region within domain 2 rigiditifies in both the closed and open conformations,
making the floppy motion in the double flexible linkage more pronounced. These results
taken together suggest that during conformational changes of the lysine binding protein,
some motion will take place within domain 2.

Differences found in the stability index between the closed and open conformations
are caused predominately by differences in hydrogen bonding. This must be the case
since the covalent bonding is identical in each conformation with the sole exception
of the presence of the lysine substrate in the closed conformation, which itself is non-
covalently bound. It is important to discriminate between real physical differences as
a result of the presence of the lysine substrate, in contrast to the sensitivity of our
approach in selecting a particular set of hydrogen bonds that are modeled as distance
constraints. We consider differences as physical when the results are robust against
small perturbations in the hydrogen bond selection criteria.
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Figure 13. The stability index associated with the ¢ and ¢ dihedral angles (hinge joints) along the
mainchain is shown for the lysine binding protein in its closed conformation (PDB code 1llst). In the
legend on the right, U1-U5 represent underconstrained regions and R1-R9 represent rigid substructures
that FIRST identified. The labeling scheme and choice of symbols used for the underconstrained
regions and rigid substructures are consistent with the open conformation shown below to aid in
direct comparisons. Note that a single rigid region (eg. R1) can be discontinuous in sequence number
along the mainchain. The two sets of dashed lines locate the double flexible linkage between residues
88-93 and 182-194
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Figure 14. The stability index associated with the ¢ and 1 dihedral angles (hinge joints) along the

mainchain is shown for the lysine binding protein in its open conformation (PDB code 2lao). The
legend on the right and the dashed lines are the same as used above for the closed conformation.
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There is one main difference in the intrinsic flexibility between the closed and open
conformations that is worth mentioning here. This difference is associated with the
underconstrained region involving the double flexible linkage (labeled U2) that extends
into domain 2. There is also a corresponding difference in a rigid substructure (labeled
as R2). In both conformations rigid substructure R2 consists of a relatively stable re-
gion that is overconstrained. In the closed conformation it has some additional regions
that are (mostly) isostaticly rigid to the stable base, while in the open conformation
these regions remain floppy and are part of underconstrained region U2. Thus in the
open conformation, underconstrained region U2 is larger in size, consisting of 300 ro-
tatable dihedral angles from which only 36 are independent. In the closed conformation
underconstrained region U2 has 219 rotatable dihedral angles from which only 27 are
independent. Note that the count in dihedral angles include the sidechain covalent
bonding as well as hydrogen bonding.

As the hydrogen bond selection criteria is relaxed or tightened slightly, it is ob-
served that underconstrained region U2 in the closed conformation is always smaller
than that in the open conformation. We therefore suspect that this result is a robust
signature for the presence of the lysine substrate, and that domain 2 is mechanically
more stable when a substrate is present. This rigiditifying effect from the substrate
could be a contributing factor in explaining why the time scale is six orders of mag-
nitude slower for the hinge motion when the substrate is present. This is an exciting
prospect as this suggests the possibility of identifying allosteric effects directly from
characterizing the mechanical properties of a structure.

In our preliminary investigation on the lysine-binding protein, the FIRST analysis
already has provided new insights as well as correlated with known motions within the
protein. The next step is to implement the hierarchical protocol in modeling hydrogen
bonds as distance constraints from strongest to weakest using a hydrogen bonding
energy term.

SUMMARY

In this article, we have introduced a novel distance constraint approach for char-
acterizing the intrinsic flexibility of a protein. The conceptual framework is to develop
a hierarchical protocol for adding more distance constraints that model successively
weaker bonding forces. The underlying physical and mathematical assumptions behind
this idea were layed out. We then focused on the first step toward our goal of developing
a robust automated program, FIRST, that can characterize the mechanical stability of
a protein. Namely, we have shown the application of concepts from graph rigidity to
identify a series of mechanical properties of a protein structure under a given set of
bonding forces modeled as distance constraints.

The initial implementation of FIRST determines the floppy inclusion and rigid
substructure topography of a given protein structure based on a single set of distance
constraints as determined by covalent and hydrogen bonding. The stability index is
introduced as a continuous measure for quantifying the local mechanical stability of each
dihedral angle. When the measure falls between (—1,0), this physically corresponds
to a dihedral angle within an underconstrained region that is anywhere from being
completely independent to nearly isostatically rigid. A zero value indicates that the
dihedral angle is within an isostaticly rigid region. A stability index that is greater
than zero physically corresponds to a dihedral angle within an overconstrained region,
where stability is enhanced as the number of redundant constraints within the region
increases.
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There are several advantages of FIRST relative to previous methods for analyz-
ing protein flexibility. The FIRST analysis requires calculations that can be done in
real-time (fraction of a second). For a given set of distance constraints the rigidity
is calculated exactly, which includes identifying overconstrained and underconstrained
regions in addition to obtaining a rigid cluster decomposition. The ability to determine
underconstrained regions gives the FIRST analysis a distinctive advantage over other
methods, because these regions localize important collective motions, whereby changing
one dihedral angle will generally change other dihedral angles within the same under-
constrained region. The stability index is introduced as a continuous measure to give
meaningful one-dimensional representations for the mechanical stability of a protein
structure, and this has already provided new insights on the lysine-binding protein.
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