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Substrates, Authentic Standards and Reagents  

(S)-α-, p-Methoxy-(S)-α-, p-nitro-(S)-α-, and p-chloro-(R/S)-β-phenylalanine and (E)-o-

methyl-, (E)-p-methyl-, (E)-p-methoxy- and (E)-p-nitro-cinnamic acid, (E)-o-furyl-acrylate and 

(trimethylsilyl)diazomethane (2.0 M in diethyl ether) were purchased from Sigma-Aldrich-Fluka 

(St. Louis, MO). Racemic p-nitro-β-phenylalanine was purchased from Oakwood Products, Inc. 

(West Columbia, SC), and o-methoxy-(S)-α-, m-methoxy-(S)-α-, o-nitro-(S)-α-, m-nitro-(S)-α-, o-

methoxy-(S)-β-, m-methoxy-(S)-β-, o-nitro-(S)-β-, and m-nitro-(S)-β-phenylalanine were 

purchased from Chem-Impex International, Inc. (Wood Dale, IL). 2-Amino-5-phenylpentanoic 

acid was purchased from Acros Organics (New Jersey). All other (S)-α- and β-amino acids were 

purchased from PepTech Corporation (Burlington, MA) and the other (E)-cinnamic acids were 

purchased from Alfa Aesar (Ward, Hill, MA). All chemicals were used without further 

purification, unless noted. 
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General Instrumentation 

GC-MS analysis was performed with an Agilent 6890N gas chromatograph equipped with a 

capillary GC column (30 m × 0.25 mm × 0.25 µM; HP-5MS; J&W Scientific) with helium as the 

carrier gas (flow rate, 1 mL/min). The injector port (at 250 °C) was set to splitless injection 

mode. A 1-µL aliquot of each sample was injected using an Agilent 7683 auto-sampler (Agilent, 

Atlanta; GA). The column temperature was increased from 50 – 110 °C at 30 °C/min, then 

increased by 10 °C/min to 250 °C (total run time of 16 min), and returned to 50 °C over 5 min, 

with a 5 min hold. The gas chromatograph was coupled to a mass selective detector (Agilent, 

5973 inert) operated in electron impact mode (70 eV ionization voltage). All spectra were 

recorded in the mass range of 50 – 400 m/z.  
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Figure	
  S1.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic β-phenylalanine made from PaPAM catalysis (top) and 
authentic β-phenylalanine (bottom). GC retention times (GC Rt) are shown.	
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Figure	
  S2.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic m-bromo-β-phenylalanine made from PaPAM catalysis (top) 
and authentic m-bromo-β-phenylalanine (bottom). GC retention times (GC 
Rt) are shown.	
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Figure	
  S3.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic m-fluoro-β-phenylalanine made from PaPAM catalysis (top) 
and authentic m-fluoro-β-phenylalanine (bottom). GC retention times (GC 
Rt) are shown.	
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Figure	
  S4.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic m-chloro-β-phenylalanine made from PaPAM catalysis (top) 
and authentic p-chloro-β-phenylalanine (bottom). GC retention times (GC 
Rt) are shown. Note, p-chloro-β-phenylalanine was on-hand and used as the 
authentic standard.  	
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Figure	
  S5.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic p-fluoro-β-phenylalanine made from PaPAM catalysis (top) 
and authentic p-fluoro-β-phenylalanine (bottom). GC retention times (GC 
Rt) are shown.	
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Figure	
  S6.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic o-methyl-β-phenylalanine made from PaPAM catalysis (top) 
and authentic o-methyl-β-phenylalanine (bottom). GC retention times (GC 
Rt) are shown.	
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Figure	
  S7.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic 2-furyl-β-alanine made from PaPAM catalysis (top) and 
authentic 2-furyl-β-alanine (bottom). GC retention times (GC Rt) are shown.	
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Figure	
  S8.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic 3-thienyl-β-alanine made from PaPAM catalysis (top) and 
authentic 3-thienyl-β-alanine (bottom). GC retention times (GC Rt) are 
shown.	
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Figure	
  S9.	
  EI-­‐MS	
  spectra of the N-(ethoxycarbonyl) methyl ester derivatives 
of biosynthetic m-nitro-β-phenylalanine made from PaPAM catalysis (top) 
and authentic m-nitro-β-phenylalanine (bottom). GC retention times (GC Rt) 
are shown.	
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Figure	
   S10.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic o-fluoro-β-phenylalanine made from PaPAM 
catalysis (top) and authentic o-fluoro-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure	
   S11.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic m-methoxy-β-phenylalanine made from PaPAM 
catalysis (top) and authentic m-methoxy-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure	
   S12.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic 2-thienyl-β-alanine made from PaPAM catalysis 
(top) and authentic 2-thienyl-β-alanine (bottom). GC retention times (GC Rt) 
are shown.	
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Figure	
   S13.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic m-methyl-β-phenylalanine made from PaPAM 
catalysis (top) and authentic m-methyl-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure	
   S14.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic p-chloro-β-phenylalanine made from PaPAM 
catalysis (top) and authentic p-chloro-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure	
   S15.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic p-bromo-β-phenylalanine made from PaPAM 
catalysis (top) and authentic p-bromo-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure	
   S16.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic p-methyl-β-phenylalanine made from PaPAM 
catalysis (top) and authentic p-methyl-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure	
   S17.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic p-nitro-β-phenylalanine made from PaPAM 
catalysis (top) and authentic p-nitro-β-phenylalanine (bottom). GC retention 
times (GC Rt) are shown.	
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Figure	
   S18.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic p-methoxy-β-phenylalanine made from PaPAM 
catalysis (top) and authentic p-methoxy-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
  

	
   	
  

0

20

40

60

80

100

100 150 200 250 300
0

20

40

60

80

100

180
109 121

151

134

162
192

208

221

 

 

281

Biosynthetic Product
GC Rt = 12.25 min

Authentic Standard
GC Rt = 12.29 min

109
121

134

162 180 192

208

221 281151

 

R
el

at
iv

e 
Io

n 
Ab

un
da

nc
e 

(%
)

m/z



26S 

 

	
  

	
  
Figure	
   S19.	
   EI-­‐MS	
   spectra of the N-(ethoxycarbonyl) methyl ester 
derivatives of biosynthetic o-methoxy-β-phenylalanine made from PaPAM 
catalysis (top) and authentic o-methoxy-β-phenylalanine (bottom). GC 
retention times (GC Rt) are shown.	
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Figure S20. Hanes-Woolf plot of biosynthetic β-phenylalanine (designated as velocity, v) 
catalyzed by PaPAM from α-phenylalanine (S). 

 
Figure S21. Hanes-Woolf plot of biosynthetic m-bromo-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from m-bromo-α-phenylalanine (S). 
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Figure S22. Hanes-Woolf plots of biosynthetic m-fluoro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from m-fluoro-α-phenylalanine (S). 

 
Figure S23. Hanes-Woolf plots of biosynthetic m-chloro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from m-chloro-α-phenylalanine (S). 
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Figure S24. Hanes-Woolf plots of biosynthetic p-fluoro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from p-fluoro-α-phenylalanine (S). 

 
Figure S25. Hanes-Woolf plots of biosynthetic o-methyl-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from o-methyl-α-phenylalanine (S). 
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Figure S26. Hanes-Woolf plots of biosynthetic 2-furyl-β-alanine (designated as velocity, v) 
catalyzed by PaPAM from 2-furyl-α-alanine (S). 

 
Figure S27. Hanes-Woolf plots of biosynthetic 3-thiophenyl-β-alanine (designated as velocity, v) 
catalyzed by PaPAM from 3-thiophenyl-α-alanine (S). 
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Figure S28. Hanes-Woolf plots of biosynthetic m-nitro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from m-nitro-α-phenylalanine (S). 

 
Figure S29. Hanes-Woolf plots of biosynthetic o-fluoro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from o-fluoro-α-phenylalanine (S). 

0 500 1000 1500 2000
0

5

10

15

20

25

 

 

[S
]/ν

 (µ
M

/n
m

ol
·s

-1
) ×

 1
0-3

[meta-Nitro-α-Phenylalanine] (µM)

0 200 400 600 800 1000
0

50

100

150

200

250

300

 

 

[S
]/ν

 (µ
M

/n
m

ol
·s

-1
) ×

 1
0-3

[ortho-Fluoro-α-Phenylalanine] (µM)



32S 

 

 
Figure S30. Hanes-Woolf plots of biosynthetic m-methoxy-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from m-methoxy-α-phenylalanine (S). 

 
Figure S31. Hanes-Woolf plots of biosynthetic 2-thiophenyl-β-alanine (designated as velocity, v) 
catalyzed by PaPAM from 2-thiophenyl-α-alanine (S). 
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Figure S32. Hanes-Woolf plots of biosynthetic m-methyl-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from m-methyl-α-phenylalanine (S).  

 
Figure S33. Hanes-Woolf plots of biosynthetic p-chloro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from p-chloro-α-phenylalanine (S).  
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Figure S34. Hanes-Woolf plots of biosynthetic p-bromo-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from p-bromo-α-phenylalanine (S).  

 
Figure S35. Hanes-Woolf plots of biosynthetic p-methyl-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from p-methyl-α-phenylalanine (S).  
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Figure S36. Hanes-Woolf plots of biosynthetic p-nitro-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from p-nitro-α-phenylalanine (S).  

 
Figure S37. Hanes-Woolf plots of biosynthetic p-methoxy-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from p-methoxy-α-phenylalanine (S).  
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Figure S38. Hanes-Woolf plots of biosynthetic o-methoxy-β-phenylalanine (designated as 
velocity, v) catalyzed by PaPAM from o-methoxy-α-phenylalanine (S).  
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Table S1. Comparison of the experimental KM and predicted energetic order of each substituent 
at ortho-, meta-, para-positions. 

 

Fluoro-Substituentsa Chloro-Substituentsa Bromo-Substituentsa 

meta- 
(3) 

para- 
(5) 

ortho- 
(10) 

meta- 
(4) 

para- 
(14) 

ortho- 
(21) 

meta- 
(2) 

para- 
(15) 

ortho- 
(20) 

KM (µM) 27 29 73 432 491 -c 339 525 - 
EV(p-l) 

(kcal/mol) 19 19 21 33 37 93 55 60 204 

(E(p-l) + E(l)) 
(kcal/mol) 148 150 149 166 170 226 188 193 338 

 
Nitro-Substituentsa Methyl-Substituentsb Methoxy-Substituentsb 
meta- 
(9) 

para- 
(17) 

ortho- 
(22) 

ortho- 
(6) 

para- 
(16) 

meta- 
(13) 

ortho- 
(19) 

meta- 
(11) 

para- 
(18) 

KM (µM) 430 752 - 88 (I) 163 (II) 204 (III) 164 (I) 990 (II) 1187 (III) 
EV(p-l) 

(kcal/mol) 48 186 205 55 (III) 46 (II) 40 (I) 108 (III) 86 (II) 81 (I) 

(E(p-l) + E(l)) 
(kcal/mol) 236 360 393 190 (III) 179 (II) 174 (I) 292 (III) 240 (II) 219 (I) 

aComputational approach correctly explained the trends in KM values of substrate analogs. 
bTrends in KM did not correlate well with computationally predicted energy values, which fell within a 
relatively narrow range. Trends from most (I) to least (III) favorable are shown in (Roman numerals).  
cHyphens indicate non-productive substrates.  
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Table S2. Comparison of the experimental KM and predicted energetic order of each substituent 
at ortho-, meta-, para-positions. This data is the same as presented in Table 1S; here, it is 
organized according to substituent position rather than type.	
  

 ortho-Substituents 

KM (µM) 
Fluoro Methyl Methoxy Bromo Chloro Nitro 
73 88 164 -a - - 

EV(p-l) 
(kcal/mol) 

Fluoro Methyl Chloro Methoxy  Bromo Nitro 
21 55 93 108 204 205 

(E(p-l) + E(l)) 
(kcal/mol) 

Fluoro Methyl Chloro Methoxy Bromo Nitro 
149 190 226 292 338 393 

 meta-Substituents 

KM (µM) 
Fluoro Methyl Bromo Nitro Chloro Methoxy 
27 204 339 430 432 990 

EV(p-l) 
(kcal/mol) 

Fluoro Chloro Methyl Nitro Bromo Methoxy 
19 33 40 48 55 86 

(E(p-l) + E(l)) 
(kcal/mol) 

Fluoro Chloro Methyl Bromo Nitro Methoxy 
148 166 174 188 236 240 

  para-Substituents 

KM (µM) 
Fluoro Methyl Chloro Bromo Nitro Methoxy 
29 163 491 525 752 1187 

EV(p-l) 
(kcal/mol) 

Fluoro Chloro Methyl Bromo Methoxy Nitro 
19 37 46 60 81 186 

(E(p-l) + E(l)) 
(kcal/mol) 

Fluoro Chloro Methyl Bromo Methoxy Nitro 
150 170 179 193 219 360 

aNon-productive substrates are indicated by hyphens. 
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Table S3. Evaluation of protein-ligand and ligand internal energy values and preference for NH2-
cis versus NH2-trans configuration.  

Substrate 
NH2-trans 

(E(p-l) + E(l))a 
(kcal/mol) 

NH2-cis 
(E(p-l) + E(l))a 
(kcal/mol) 

EV(p-l)
b 

(kcal/mol) 
KM 

(µM) 
Preferred 

Orientationc 

1 
 

149 149 19 168 Symmetricald 

2 
 

429 188 55 339 NH2-cis 

3 
 

153 148 19 27 NSDe 

4 
 

273 166 33 432 NH2-cis 

5 
 

150 150 19 29 Symmetrical 

6 
 

190 489 55 88 NH2-trans 

7  133 115 21 415 NSD 

8 
 

156 154 21 337 NSD 

9 
 

1640 236 48 430 NH2-cis 

10 
 

149 165 21 73 NSD 

11 
 

265 240 86 990 NSD 

12  132 139 20 132 NSD 

13 
 

245 174 40 204 NH2-cis 

Table S3S	
  continued	
  on	
  next	
  page	
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14 
 

170 170 37 491 Symmetrical 

15 
 

193 193 60 525 Symmetrical 

16 
 

179 179 46 163 Symmetrical 

17 
 

360 360 186 752 Symmetrical 

18 
 

219 947 81 1187 NH2-trans 

19 
 

409 292 108 164 NH2-cis 

20 
 

338 525 204 -f NH2-trans 

21 
 

226 401 93 - NH2-trans 

22 
 

393 2065 205 - NH2-trans 

a(E(p-l) + E(l)) is the sum of protein-ligand and ligand internal energy, where E(p-l) is the protein-
ligand interaction energy and E(l) is the ligand internal energy. bEV(p-l) is the vdW energy of 
protein-ligand interaction, one of the terms contributing to E(p-l). The vdW energy is given for 
whichever orientation (NH2-cis or NH2-trans) had the lower, more favorable (E(p-l) + E(l)) value. 
cSubstrates were categorized as preferring an NH2-cis or NH2-trans configuration if the given 
orientation was at least 25 kcal/mol lower in (E(p-l) + E(l)) value. dα-Phenylalanine and para-
substituted substrates have symmetrical aryl rings with equal interaction energies for the NH2-cis 
and NH2-trans configurations. eSubstrates observed to have no significant difference (NSD) in 
energy for the NH2-cis or NH2-trans configuration. fNon-productive substrates are indicated by 
hyphens. Note, all energies reported should be considered relative rather than absolute. 
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Figure S39. H-bonding interaction of ortho-methoxy-α-phenylalanine (19) and active site 
Tyr320. o-Methoxy-α-phenylalanine atoms are colored as C, green; N, blue; O, red and Tyr320 
atoms are colored as C, light blue; O, red; H, white. 
  

Tyr 320 
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Figure S40. Relationship between protein-ligand interaction energy E(p-l) and experimental KM. 
Substrates were placed in the active site in NH2-cis and NH2-trans orientations overlaid with the 
crystallographic orientation of α-phenylalanine from PDB entry 3UNV, and the lower energy 
orientation was kept. Left panel: (●) Binding site residues of PaPAM were maintained in their 
crystallographic orientation, yielding a linear correlation coefficient of 0.48 between E(p-l) and 
experimental KM. Right panel: (○) Energy minimization was used to reduce any repulsive 
interactions, leading to lower correlation between the resulting protein-ligand interaction energy 
and KM value (correlation coefficient = 0.35). 
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Figure S41. Relationship between the electrostatic (Coulombic) component of the protein-ligand 
interaction energy EC(p-l) and experimental KM. Substrates were placed in the active site in NH2-
cis and NH2-trans configurations overlaid with the crystallographic orientation of α-
phenylalanine, and the lower energy orientation was kept. Left panel: (●) Binding site of PaPAM 
was kept in the crystallographic orientation (correlation coefficient = 0.33). Right panel: (○) 
Energy minimization was used to reduce any protein-ligand repulsive interactions (correlation 
coefficient = 0.011). 
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Figure S42. Relationship between the van der Waals energy component of the protein-ligand 
energy EV(p-l) and experimental KM. Substrates were again placed in NH2-cis and NH2-trans 
orientations overlaid with the crystallographic orientation of α-phenylalanine from PDB entry 
3UNV, and the lower energy orientation was kept. Left panel: (●) Binding site residues of 
PaPAM were kept in the crystallographic orientation (correlation coefficient = 0.54). Right 
panel: (○) Energy minimization was used to reduce any protein-ligand repulsive interactions 
(correlation coefficient = 0.42).  These results indicate that the van der Waals interaction energy 
between the protein and each substrate overlaid with the α-phenylalanine-bound crystal structure 
is most predictive of the relative KM values of the substrates.	
  


