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Summary/Abstract  
Ligand-based virtual screening has become a standard technique for the efficient discovery of bioactive 
small molecules. Following assays to determine the activity of compounds selected by virtual screening, 
or other approaches in which dozens to thousands of molecules have been tested, machine learning 
techniques make it straightforward to discover the patterns of chemical groups that correlate with the 
desired biological activity. Defining the chemical features that generate activity can be used to guide the 
selection of molecules for subsequent rounds of screening and assaying, as well as help design new, more 
active molecules for organic synthesis. 
 
The quantitative structure-activity relationship machine learning protocols we describe here, using 
decision trees, random forests, and sequential feature selection, take as input the chemical structure of a 
single, known active small molecule (for example, an inhibitor, agonist, or substrate) for comparison with 
the structure of each tested molecule. Knowledge of the atomic structure of the protein target and its 
interactions with the active compound are not required. These protocols can be modified and applied to 
any data set that consists of a series of measured structural, chemical, or other features for each tested 
molecule, along with the experimentally measured value of the response variable you would like to 
predict or optimize for your project, for instance, inhibitory activity in a biological assay or ΔGbinding. To 
illustrate the use of different machine learning algorithms, we step through the analysis of a dataset of 
inhibitor candidates from virtual screening that were tested recently for their ability to inhibit GPCR-
mediated signaling in a vertebrate. 
 
Key Words: 
 
Virtual screening, ligand-based screening, quantitative structure-activity relationship, pharmacophore, 
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Abbreviations: 
 
2D: two-dimensional; 3D: three-dimensional; 3kPZS: 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate; 
CAS: Chemical Abstracts Service Registry, CSD: Cambridge Structural Database, DKPES: 3,12-diketo-
4,6-petromyzonene-24-sulfate, EOG: electro-olfactogram; GPCR: G-protein coupled receptor; QSAR: 
quantitative structure-activity relationship; SFS: sequential feature selection; SBS: sequential backward 
selection; VS: virtual screening, ZINC12: Zinc is Not Commercial Database, version 12 

1. Introduction 
In this chapter, we will apply machine learning to analyze the results from a virtual screening (VS) project 
for discovering inhibitors of GPCR signaling in a vertebrate, to infer the importance of functional groups 
for their biological activity. Computer-based ligand screening, also known as ligand-based screening, is 
frequently used in pharmaceutical discovery because it performs robustly in identifying active molecules 
from the top-scoring set and does not require the availability of an atomic structure of the protein target 
(1, 2). Further, it has been shown that ligand-based virtual screening is capable of exploring different 
active scaffolds, making it a valuable alternative to structure-based methods such as molecular docking, 
even when atomic structures of the target are known (3, 4). 
 
However, scientists typically focus on the most active handful of compounds and test their closest analogs 
while not making use of the activity data available from all the tested compounds to identify correlations 
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between their chemical groups and activity values. Part of this may be due to the need to establish spatial 
correspondences between chemical groups in compounds containing different molecular scaffolds (for 
example, comparing substituents on a steroid ring system versus a purine nucleotide). This problem has 
been circumvented in the protocols presented here by considering all molecules as fully flexible 3D 
structures and determining their optimal overlay based on the volumes and partial charges of the atoms, 
followed by comparing the chemical identities of neighboring atoms and small organic groups such as –
NH2. We will use the term “functional groups” to refer to single or small groups of atoms that are being 
compared between molecules. This flexible overlay procedure provides a rational and quantitative way of 
comparing chemical groups between compounds. 
 
Discovering Biologically Active Molecules through Virtual Screening  
  
The most prominent approaches in the computer-aided discovery of biologically active molecules are 
structure-based screening (5–8) and ligand-based screening (1, 2, 9, 10) as well as hybrids thereof (11, 
12). Traditionally, structure-based screening is restricted to applications where an experimentally 
determined, high-resolution three-dimensional (3D) structure of the ligand's binding partner (usually a 
protein or nucleic acid) is available from X-ray crystallography or nuclear magnetic resonance 
experiments. 
 
While ligand-based screening does not require knowledge of the binding target, it assumes that active 
molecules are likely to share shape and chemical similarities with a known, biologically active ligand. In 
short, ligand-based screening can be described as a similarity search between a known ligand and the 
molecules in a database (Figure 1). 
 

 
Figure 1. An illustration of the two broad categories of virtual screening: Structure-based virtual screening involves 
docking into a binding site to maximize protein-ligand surface complementarity, and ligand-based virtual screening 
involves evaluating small-molecule similarity with a known ligand. 
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1.1. Using Machine Learning to Identify Functional Groups Associated with 
Biological Activity 
 
To guide virtual screening, understand biological mechanisms, and aid the design of more potent 
inhibitors or activators of molecular processes, several different techniques have been developed to 
analyze datasets of molecular descriptors and measured activity. A common goal in quantitative structure-
activity relationship (QSAR) modeling includes the prediction of the in vitro or in vivo activity of 
molecules given their features. Another common goal is to gain insights into the importance of individual 
functional groups for binding or chemical activity; such insights are invaluable for the discovery and 
optimization of potent agonists or inhibitors. More detailed discussions of QSAR can be found in Kubinyi 
et al. 2006 (13) and Verma et al. 2010 (14).  
 
To infer which functional groups are most important for biological activity, this chapter focuses on the 
use of supervised machine learning algorithms to discover functional group matching patterns that explain 
the relative activity of the tested inhibitor candidates. Primarily, the analysis of the discriminants of 
biological activity presented here employs tree-based machine learning algorithms. A decision tree (15) 
that separates active from non-active molecules provides a model that is readily interpretable, resulting in 
a set of decision rules that if chained together, can explain the hierarchy of features in a molecule that are 
most important for distinguishing actives from non-actives. Secondly, multiple decision trees will be 
combined via the random forest method (16). Each decision tree in a random forest is fit to a random 
sample of the training data and feature set. This produces an ensemble of different decision trees, which 
together provide a robust predictive model that is less prone to overfitting the training data than any 
individual decision tree (16). Furthermore, a random forest facilitates the computation of feature 
importance as the average information gain over the individual trees, as it will be explained in more detail 
in the Methods section. Lastly, we will utilize an implementation of sequential backward selection, a 
sequential feature selection algorithm that identifies subsets of features to maximize the performance of a 
given model in a greedy (fastest improvement, rather than exhaustive) fashion (17, 18). Sequential feature 
selection algorithms can be combined with any machine learning algorithm, and hence, they provide a 
flexible, model-agnostic solution for the analysis of combinations of functional groups that explain 
biological activity. 
 
 
1.2. Predicting the Essential Features of GPCR Inhibitors: A Real-World 
Case Study 
 
This chapter presents an automated, machine learning-based approach to infer the discriminants of 
activity in molecules from assays performed on compounds prioritized by ligand-based screening. To 
explain the methodology behind this approach, we will consider a novel dataset of 56 molecules that have 
been prioritized as candidates for inhibiting GPCR-mediated pheromone signaling in an invasive species 
control project. Readers can access the same data and software and then perform the same analyses and 
compare their results with ours. 
 
The goal of this invasive species control project is to inhibit a pheromone-induced GPCR olfactory 
signaling pathway. We hypothesized that the inhibition of pheromone detection by the olfactory system 
will prevent mature female sea lamprey from reaching mature males at spawning grounds in tributaries of 
the Laurentian Great Lakes, and thus reduce the invasive sea lamprey population. Controlling the sea 
lamprey with pesticide applications currently costs millions of dollars per year, with native fish 
populations and commercial fishing continuing to be impacted by sea lamprey parasitism (19). The 
rationale behind the screening side of this project is based on a recently completed project (10), focusing 
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on inhibiting the GPCR signaling pathway induced by a male sea lamprey mating pheromone, 7α,12α, 24-
trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS). 
 
The dataset analyzed here consists of the chemical structures and assay data for another male sea lamprey 
mating pheromone, the sulfate-conjugated bile alcohol, 3,12-diketo-4,6-petromyzonene-24-sulfate 
(DKPES, Figure 3). The 56 molecules prioritized by ligand-based screening according to their degree of 
3D DKPES similarity were assayed for their ability to block the in vivo sea lamprey olfactory response to 
DKPES, as measured by an electro-olfactogram assay (EOG). The activity data was then analyzed using 
machine learning algorithms to uncover structure-function patterns. 

 
 

Figure 2. 3D structure of a favorable (low-energy) DKPES conformer, where the functional group features 
corresponding to the columns in the olfactory response dataset are highlighted with gray circles. [insert high res] 
White indicates carbon, red indicates oxygen, and yellow indicates sulfur. 
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A brief summary of the virtual screening approach that we used to identify inhibitory mimics of DKPES 
is provided in Figure 3. 
 

 
Figure 3. Summary of the virtual screening workflow to prioritize molecules for electro-olfactogram (EOG) assays. 
The Screenlamp toolkit (10) (https://github.com/psa-lab/screenlamp) was used to prepare the virtual screening 
pipeline, including ROCS v3.2.0.4 (OpenEye Scientific Software, Santa Fe, NM; https://www.eyesopen.com/rocs), 
OMEGA v2.4.6 (OpenEye Scientific Software, Santa Fe, NM; https://www.eyesopen.com/omega), and 
QUACPAC/molcharge (OpenEye Scientific Software, Santa Fe, NM; 
https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html). The screening databases of small 
molecules, mostly commercially available, were the drug-like molecules in ZINC12 (http://zinc.docking.org) (20), 
steroid structures from Chemical Abstracts Service Registry (CAS; https://www.cas.org), and steroid structures from 
the Cambridge Structural Database (CSD; https://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/) (21). 
 
 
As a result, 56 candidate molecules were prioritized for biological assays based on the following criteria: 

- Steroidal substructure containing molecules with a high degree of shape and charge match to the 
reference pheromone, DKPES (Figure 2). 

- Four DKPES analogs with oxidized (double bond-containing) rings that are naturally produced by 
mature male sea lamprey (molecule IDs: ENE 1-4, Figure 4) (22).  

- Diverse compounds to test the hypothesis that compounds with the best charge and shape match 
will mimic DKPES (without requiring a steroid core or sulfate tail match).  

- Non-steroid compounds having 3-keto or 3-hydroxy and 12-keto or 12-hydroxy matches and at 
least one sulfate oxygen match that overlay on the corresponding oxygen atoms in DKPES 
(Figure 2). 

 



 

 7 

 
Figure 4. 2D structures of the 4 combinatorial DKPES analogs ("ENE" compounds) (22) 
ENE1: 7,24-dihydroxy-3,12-diketo-1,4-choladiene-24-sulfate; 
ENE2: 7,24-dihydroxy-3,12-diketo-4-cholene-24-sulfate; 
ENE3: 7,12,24-trihydroxy-3-keto-4-cholene-24-sulfate; 
ENE4: 7,12,24-trihydroxy-3-keto-1-cholene-24-sulfate; 
 
 
To measure the biological activity of the 56 DKPES inhibitor candidates selected with the above 
screening and prioritization criteria, we used an electro-olfactogram (EOG) (10). The measured EOG 
response, acting as the target variable in this dataset, was the percentage reduction of the standard DKPES 
signal when the sea lamprey nose was perfused with a known concentration (10-6 M) of inhibitor 
candidate (computed as the average of 2 to 5 experimental replicates). Figure 5 shows four of the 56 
molecules for illustrative purposes, two actives and two non-actives, with the percent DKPES olfactory 
inhibition for each. In the context of this project, non-actives were defined as molecules that block the 
olfactory response by less than 40% in EOG assays, and molecules that block the signaling response by at 
least 60% were defined as actives. 
 
The DKPES dataset for analysis by machine learning contains the ROCS overlay scores from ligand-
based screening (Figure 3) as well as the functional group matching information provided by Screenlamp 
in tabular form (10) (https://github.com/psa-lab/predicting-activity-by-machine-learning). 
 
 

 
 

Figure 5. 3D structures and percent DKPES olfactory inhibition of the two most active molecules (actives, top row) 
and two low-activity molecules (non-actives, bottom row) from the screening set, shown in green as overlayed with 
the best-matching DKPES 3D conformer (cyan). 
 
 

ENE1

ENE2

ENE4ENE3

ENE1

ZINC03876071: 3.2 % ZINC22058386: 0.0 %

“ENE4:” 90.5 % ZINC72400307: 90.4 %
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Using the DKPES dataset as a case study, the Methods section will explain how to work with such tabular 
datasets consisting of samples and molecular features using open source libraries for data parsing, 
visualization, and machine learning. The code and data used in the following section is freely available at 
https://github.com/psa-lab/predicting-activity-by-machine-learning. 
 

2. Materials  

2.1. Python Interpreter 
 
To perform the analyses described in the Methods section, a recent Python (23) version (3.5 or  
newer) is required (Python 3.6 is recommended). A Python installer for all major operating  
systems (macOS, Windows, and Linux) can be downloaded from  
https://www.python.org/downloads/.  
 
2.2. Python Libraries for Scientific Computing 
 
The following list specifies the Python libraries used in this chapter, the recommended version number, 
and a short description of their use: 

• NumPy version 1.13.0 or newer (http://www.numpy.org); numerical array library (24) 
• SciPy version 0.19.0 or newer (https://www.scipy.org); advanced functions for scientific 

computing (25) 
• Pandas version 0.20.1 or newer (http://pandas.pydata.org); handling of CSV files and working 

with data frames (26) 
• Matplotlib version 2.0.2 or newer (https://matplotlib.org); 2D plotting (27) 
• Scikit-learn version 0.18.1 or newer (http://scikit-learn.org/stable/); algorithms for machine 

learning (28) 
• MLxtend version 0.7.0 or newer (http://rasbt.github.io/mlxtend/); sequential feature selection 

algorithms (18) 
 
The scientific computing libraries listed above can be installed using Python's in-built Pip module 
(https://pypi.python.org/pypi/pip) by executing the following line of code directly from a macOS/Unix, 
Linux, or Windows MS-DOS terminal command line: 
 
pip install numpy scipy pandas matplotlib scikit-learn pydotplus mlxtend 
 
If you encounter problems with version incompatibilities, you can specify the package versions explicitly, 
as shown in the following terminal command example: 
 
pip install numpy==1.13.0 scipy==0.19.0 pandas==0.20.1 matplotlib==2.0.2 scikit-
learn==0.18.1 pydotplus==2.0.2 mlxtend==0.7.0 

 
2.3. Graph Visualization Software 
 
To visualize the decision trees later in this chapter, an installation of GraphViz is needed. The GraphViz 
downloader is freely available at http://www.graphviz.org with the installation and setup instructions. 
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2.4. Dataset 
 
The datasets being used in this chapter, as well as the source files of all the accompanying code, are 
available online under a permissive open source license at https://github.com/psa-lab/predicting-activity-
by-machine-learning. 
 
2.5 Additional Resources 
 
If you are unfamiliar with Python and the Python libraries that you installed in section 2.2. Python 
Libraries for Scientific Computing, it is highly recommended to familiarize yourself with their basic 
functionality by reading these freely available resources: 
 

• Python Beginner Guide: https://wiki.python.org/moin/BeginnersGuide 
• NumPy Quickstart Tutorial: https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 
• Introduction to NumPy: https://sebastianraschka.com/pdf/books/dlb/appendix_f_numpy-intro.pdf 
• 10 Minutes to pandas: http://pandas.pydata.org/pandas-docs/stable/10min.html 
• Matplotlib Tutorials: https://matplotlib.org/users/index.html 
• An introduction to machine learning using scikit-learn: http://scikit-

learn.org/stable/tutorial/basic/tutorial.html 

3. Methods  
This section walks through the individual steps involved in a typical analysis pipeline for identifying 
which functional groups and atoms (or other molecular properties or features) are predictive of the 
measured biological activity of the molecules. The first section explains how the tabular DKPES dataset 
can be loaded into a Python session for analysis.  
 
3.1 Loading and Inspecting the Biological Activity Dataset 
 
This section explains how to load a CSV-formatted dataset table into a current Python session. A 
convenient way to parse a dataset from a tabular plaintext format, such as CSV, is to use the read_csv 
function from the Pandas library as shown in the code example in Figure 6, which loads the DKPES 
dataset into a Pandas DataFrame object (df) for further processing. (See Note 1 in section 4.1 for 
information on reading datasets from different file formats.) 
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Figure 6. Code for reading in the DKPES dataset into a data frame. The characters >>> denote a Python interpreter 
prompting for a command to enter and execute. The table resulting from the execution of this code example 
(df.head(10)) shows an excerpt from the DKPES data table sorted by signal inhibition: the 10 most active 
molecules from the EOG experiments and their functional group matching patterns. 
 
 
As a result from executing the code shown in Figure 6, the df.head(10) call will display the first ten 
rows in the dataset, to confirm that the data file has been parsed correctly. The DKPES dataset consists of 
56 rows, where each row stores the functional group matching information for an assayed molecule with 
the reference molecule DKPES. (See Note 2 in section 4.2 for information on sorting data frames by 
specific columns.) 
 
Please note that this work assumes that a tabular dataset containing information of the molecules as well 
as the assay response have already been collected in tabular form. However, the analysis approach 
outlined in this chapter is a general one, and it is not restricted to the specific functional group matching 
patterns shown in Figure 6. For more information on how this functional group matching data can be 
generated from a ligand-based screening, see (10) (https://github.com/psa-lab/screenlamp).  
 
The first column of the DKPES data table (Figure 6), "index," numbers each molecule. The "Signal 
Inhibition" column contains the response variable measured by the biological assay, in this case ranging 
from 0 (non-active) to 1 (highly active, with 100% DKPES signal inhibition). For instance, we can see 
from the table (Figure 6) that ENE4 and ZINC72400307 (petromyzonal sulfate) were the most promising 
candidate inhibitors, as they reduced the olfactory response to DKPES by 90.5% and 90.4%, respectively, 
when each inhibitor candidate was used at the same equimolar concentration (10-6 M) as DKPES. The 
consequent columns, labeled as 3-Keto, 3-Hydroxy, and so forth, contain information about whether an 
atom or functional group in the candidate molecule overlayed (within 1.3 Å) with the same group in 
DKPES. This functional group matching data is stored as a binary variable, where 0 indicates "no 
overlay" and 1 indicates "overlay." In addition, the ROCS shape and charge (“color”) overlay scores were 
appended to the dataset. For information on how the overlay scores are computed, the reader is referred to 
https://docs.eyesopen.com/rocs/shape_theory.html and Hawkins et al. 2007 (4); however, it shall be noted 
that the ROCS scoring data is not essential for this analysis. (See Notes 3-5 in section 4.1 for information 
on working with structural information and notes about obtaining and computing molecular features.) 
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It is always helpful to perform exploratory analyses when working with a new dataset. The following 
code snippet shown in Figure 7 will generate the histogram of the signal inhibition values shown, plus the 
2D scatter plot comparing the signal inhibition values with the molecular similarity measured in the 
overlays. First, the signal inhibition data from the data frame (df) is assigned to a variable y, and the 
functional group columns of interest to a variable X. Next, the code in Figure 7 demonstrates how to use 
matplotlib to create two sublots, ax[0] and ax[1], showing a histogram of the signal inhibition and a 
scatter plot of the signal inhibition versus molecular similarity side by side. (If you are new or unfamiliar 
with the matplotlib syntax, it is recommended to consult the tutorials and resources listed in section 2.5 
Additional Resources.) 
 

 
 
Figure 7. Code for performing exploratory analysis in Python using the matplotlib library to plot a histogram of the 
"Signal Inhibition" data and a scatter plot to inspect the relationship between the signal inhibition and overlay 
scores. In the corresponding programming code, the "Signal Inhibition" column is first assigned to a variable y, and 
the functional groups of interest are assigned to the variable fgroup_cols, which is then used to create the matrix X 
that stores the functional groups matching patterns of those functional groups of interest. Next, a figure with two 
subplots is initialized by calling plt.subplots from matplotlib. The plt.hist function adds the histogram to the 
first subplot (ax[0]), and the plt.scatter function draws the scatter plot in the subplot to the right (ax[1]). The 
resulting plots show the DKPES inhibitor activity distribution for the 56 compounds that were assayed (left) and the 
relationship between activity and overlay similarity from ROCS (right), given as the TanimotoCombo score in the 
range 0 to 2, where 2 means that two 3D structures have an identical volume and partial charge distribution. 
 
 
From the histogram (left panel of Figure 7), we can see that most molecules inhibit the DKPES signal by 
less than 50% in in vivo EOG assays. The scatter plot in Figure 7 shows that 4 out of the 5 most active 
molecules have a high overlay similarity value of 1.5 or greater. The TanimotoCombo value is the sum of 
the volumetric and chemical similarity components, where an exact match (two identical molecules in the 
same conformation) will result in a maximum score of 1 for each, summing to a maximum score of 2. 
While the top 4 most active molecules have the highest overlay similarity, no correlation between overlay 
similarity and signal inhibition can be observed across the remaining 52 molecules. This indicates that 
more specific determinants of activity are at play, motivating the pattern analysis of functional groups 
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matching DKPES. Interestingly, the outlier with a very low Tanimoto similarity score and a moderately 
high signal inhibition value of 0.62 is a sulfate tail-containing natural product produced by sea squirts 
(ZINC14591952) (29), shown in Figure 8. 

 

 
Figure 8. Sulfate tail compound sodium 6-methylheptyl sulfate (carbon atoms shown in green; ZINC14591952, 
average of 62% signal inhibition in EOG experiments) overlaid with the most similar DKPES conformer (carbon 
atoms shown in cyan). 

 
 

From this molecule we can conclude that mimicking the sulfate group in DKPES alone can block the 
olfactory response of DKPES by approximately 60%, likely by competing with interactions of the similar 
tail in DKPES with the GPCR ligand binding site.  

 
3.2 Chemical and Functional Groups 
 
This section explains how to visualize the other features in the dataset: the functional group matches with 
the DKPES reference molecule (Figure 2). Using the code in Figure 9, we will plot the functional group 
matching pattern of the top 10 most active and 10 least active molecules via two heat maps shown side by 
side for a visual comparison. (See Note 1 in section 4.2 for information about the distance threshold 
chosen for assigning positive and negative functional group matches in this dataset.) 
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Figure 9. Code to generate heat maps showing matches of functional groups in DKPES by the 10 most active (left) 
and 10 least active (right) molecules tested in EOG assays. Using the matplotlib.pyplot function that was 
important as plt earlier (Figure 7), we create two subplots stored in the array ax. Using matplotlib.pyplot's 
imshow, we plot the functional group patterns of the ten most active molecules (X[:10], the first ten elements in the 
sorted data array) as a heat map in left subplot (ax[0]). Similarly, we plot the ten least active molecules (the last ten 
molecules in the array, X[-10:]) as a heat map in the right subplot (ax[1]). As the heat maps show, all features 
except sulfate-oxygens are encoded as binary variables (0: white cell background, no match; 1: light gray, match). 
Sulfate-oxygens refers to the three terminal oxygens, excluding the sulfate ester oxygen. This variable has values 
from 0-3 (up to all 3 terminal oxygens being matched), where black cell backgrounds correspond to 3 matches, dark 
gray corresponds to 2 matches, and light gray to 1 match, respectively. 
 
 
Looking at the heat maps in Figure 9, the following conclusions can be drawn: 
 

• The top 9 most active molecules have a sulfur match and match three of the oxygen atom in the 
DKPES sulfate group. 

• Sulfur and sulfate oxygen atom matches alone are not sufficient for activity. From the previous 
scatter plot analysis (Figure 7), we know that the sulfate tail analog alone (Figure 8; 
ZINC14591952) shows a signal inhibition of 60%. It matches the 3 terminal sulfate-oxygens and 
sulfur atom. However, a compound with the same matching pattern (ZINC22058386 in Figure 9) 
has no biological activity in the same assay, likely due to its greater bulk (Figure 5).  
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However, casual inspection of the data does not always lead to insights that apply to all of the 
compounds, and it can miss interesting trends, especially for large datasets. The next section will 
introduce several machine learning approaches for deducing the importance of functional groups for 
biological activity. 
 

3.3 Tracing Preferential Chemical Group Patterns using Decision Trees 
 
Decision tree classifiers are a good choice if we are concerned about the interpretability of the 
combinations of features used to predict activity. While decision trees can be trained to predict outcomes 
on a continuous scale (regression analysis), we fill focus on decision trees for classification in this 
chapter, that is, predicting whether a molecule is active or non-active. While the discretization of the 
continuous target variable (here: signal inhibition in percent) is to some extent arbitrary, it helps with 
improving the interpretability of the selected features as they can be directly interpreted as discriminants 
of active and non-active molecules. For the following analysis, we considered molecules with a signal 
inhibition of 60% or greater as active molecules.  
 
As you will see, within a tree it is easy to trace the path of decisions comprising the model that best 
separates different classes of molecules (here: active vs non-active). In other words, based on the 
functional group matching information in the DKPES dataset, the decision tree model poses a series of 
questions to infer the discriminative properties between active and non-active molecules. (See Note 1 in 
section 4.3 for more information about appropriate dataset sizes and tips for dealing with imbalanced 
datasets). 
 
The learning algorithm that is constructing a nonparametric decision tree model from the dataset works as 
follows. Starting at the tree root and splits the dataset (the active and non-active molecules) on the feature 
(for example, presence of a sulfur match) that results in the largest information gain. In other words, the 
objective function of a decision tree is to learn, at each step, the splitting criterion (or decision rule) that 
maximizes the information gain upon splitting a parent node into two child nodes. The information gain is 
computed as the difference between the impurity of a parent node and the sum of its child node 
impurities. Intuitively, we can say the lower the impurity of the child nodes, the larger the information 
gain. The impurity itself is a measure of how diverse the subset of samples is, in terms of the class label 
proportion, after splitting. For example, after asking the question "does a molecule have a positive sulfur 
match?" a pure node would only contain either active or non-active molecules when answering this 
question with a "yes." A node that consisted of 50% non-active and 50% active samples after applying a 
splitting criterion would be most impure — such a result would indicate that it was not a useful criterion 
for distinguishing between active and non-active molecules. In the decision tree implementation that we 
are going to use in this chapter, the metric for computing the impurity of a given node is measured as Gini 
impurity as used in the CART (classification and regression tree) algorithm (15). Gini impurity is defined 
as follows: 
 

Impurity(𝑡) 	= 	 𝑝(𝑖|𝑡)(1 − 𝑝(𝑖|𝑡)) 	= 	1	 − 	 𝑝(𝑖|𝑡)3
4

567

4

567

 

 
Here, t stands for a given node, i is a class label in c={active, non-active}, and p(i|t) is the proportion of 
the samples that belongs to class i for a particular node t. Looking at the previous equation, it is easy to 
see that the impurity of a given node is minimal if the node is pure and only contains samples from one 
class (for examples, actives), since 1 - ( 12 + 02) = 0. Vice versa, if samples at one node are perfectly 
mixed, the Gini impurity of a node is maximal: 1 - (0.52 + 0.52) = 0.5. In an iterative process, the splitting 
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procedure is then repeated at each child node until the leaves of the tree are pure, which means that the 
samples at each node all belong to the same class (either active or non-active), or cannot be separated 
further due to the lack of discriminatory information in the dataset. For more information about the 
decision tree learning, see (30, 31). 

To build a decision tree classifier (as opposed to a decision tree regressor), we discretize the signal 
inhibition variable, creating a binary target variable y_binary. Using the code in Figure 10, active 
molecules are specified as molecules with signal inhibition of 60% or greater (class 1), and molecules 
with less than 60% signal inhibition are labeled as non-active (class 0): 
 

 
Figure 10. Code for discretizing the continuous signal inhibition variable. The numpy.where function creates a new 
array, y_binary, where all molecules with more than 60% signal inhibition will be labeled as 1 (active), and all 
other molecules will be labeled with a 0 (non-active). 
 
 
As can be seen from computing the sum of values in the y_binary array (np.sum(y_binary), Figure 
10), discretization of the continuous signal inhibition variable resulted in 12 molecules labeled as active; 
consequently, the remaining 44 molecules in the dataset are now labeled as non-active. In the next step, 
we will initialize a decision tree classifier from scikit-learn with default values, let it learn the decision 
rules that discriminate between actives and non-actives from the dataset, and export the model and display 
it as a decision tree (Figure 11). (See Note 2 in section 4.3 for a comment about decision trees for 
regression analysis.) 
 
 



 

 16 

 
Figure 11. Binary classification tree separating active from non-active compounds. After importing the tree 
submodule from the scikit-learn machine learning library, the first line of code initializes a new 
DecisionTreeClassifier object that is then learning the decision rules from the functional group matching pattern 
array (X) and the discretized response variable (binary labels of the active and non-active molecules, y_binary) by 
calling the fit method. The last three lines of code then export the fitted decision tree as a PDF image, which is 
shown here. The first node at the top of the tree, for example, uses a decision rule asking which molecules in the 56-
molecule dataset (44 actives and 12 non-actives) match a sulfur group in DKPES. Note that this question is posed as 
a conditional (true/false) statement "Molecules do not contain a sulfur group match", due to the implementation of 
the decision tree in scikit-learn. The molecules for which the condition is "False" — that is, molecules that do match 
the sulfur group in DKPES — are then passed to the child node on the right (here: 4 non-actives and 11 actives), 
where the next conditional statement is "Molecules do not contain a 'Sulfate-Ester' match." Each node in the tree 
contains the impurity measure after the split (Gini impurity), reflecting the degree of separation between active and 
non-active compounds; a Gini impurity value of 0 reflects a set containing purely active or non-active compounds. 
The number of samples refers to the compounds at each node that pass the filtering criteria. The first value within 
brackets in the bottom row in each terminal node denotes the number of non-active compounds at that node, and the 
second number denotes the number of active compounds. Highlighted with an asterisk is the terminal node (to the 
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center-right of the plot), which contains eight active compounds and no non-active compounds. For visual clarity, 
containing more non-active molecules than actives are labeled in orange, and nodes that contain more actives than 
actives are colored in blue. The higher the color intensity, the higher the ratio of active molecules or non-active 
molecules, respectively.  
 
 
We conclude from the binary classification tree (Figure 11) that a majority of the active inhibitors (8 of 
12) share a sulfur atom and a sulfate ester group that overlay with the respective functional groups in 
DKPES; none of the non-active compounds have these characteristics. With decision trees, the resulting 
models can offer intuitive insights into the hypothesis space. Specifically, the tree in Figure 11 indicates 
that, given a set of molecules initially selected as having high volumetric and chemical similarity with 
DKPES, the presence of a sulfur atom and sulfate ester group matching those two groups in DKPES 
predicts the subset of molecules that are active as DKPES inhibitors. Using machine learning to derive 
decision rules objectively and automatically is convenient and less error-prone in providing insights 
compared with visual analysis of functional group patterns in a heat map. (See Note 3 in section 4.3 for a 
comment on building predictive classifiers.) 
 
3.4 Deducing the Importance of Chemical Groups via Random Forest 
 
To estimate the relative importance of the different functional groups based on active and non-active 
labels, we will now construct a random forest model (16), which is an ensemble method based on 
multiple decision trees. In the random forest models, the feature importance is measured as the averaged 
impurity decrease computed from multiple decision trees. In the following code example (Figure 12), we 
will use the random forest algorithm implemented in scikit-learn to create and ensemble of 1,000 decision 
trees, which are grown from different bootstrap samples of the compound dataset and randomly selected 
subsets of functional group feature variables. (A bootstrap sample is generated by randomly drawing 
samples from the original dataset with replacement to generate a resampled dataset of the same size as the 
original one.) 
 

 
 
Figure 12. Similar to fitting a DecisionTreeClassifier (Figure 11), we first initialize a new 
RandomForestClassifier object from scikit-learn and fit it to the functional group matching pattern array (X) and 
labels of the active and non-active molecules (y_binary). By setting n_estimators=1000, we will use 1000 decision 
trees for the forest. n_jobs=-1 means that we are utilizing all processors on our machine to fit those decision trees in 
parallel to speed up the computation. The random_state parameter accepts an arbitrary integer for the bootstrap 
sampling and feature selection in the decision tree to make the experiment deterministic and reproducible. 
 
 
Based on the random forest model, we can infer feature importance by averaging the impurity decrease 
for each feature split from all 1000 trees in the forest. Conveniently, the random forest implementation in 
scikit-learn already computes the feature importance upon model fitting, so that we can access this 
information from the forest, after calling the fit() method via its feature_importances_ attribute. 
The code in Figure 13 will create a bar plot of the feature importance values, which are normalized to sum 
up to 1 for easier interpretation. 
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Figure 13. Relative feature importance of the functional group matches inferred from the random forest model that 
was trained to discriminate between active and non-active molecules. First, the importances values are sorted from 
highest to lowest using NumPy's argsort function. Next, we summarize the computed feature importance in a bar 
plot using matplotlib's pyplot submodule, which was imported as plt earlier.  
 
 
As shown by the bar plot in Figure 13, the feature importance values computed from the 1,000 regression 
trees agree with the conclusions drawn previously in the Methods sections 3.3 and 3.4: sulfur, sulfate 
ester, and sulfate oxygen groups are the most important functional group features for DKPES inhibitor 
activity (Figure 11). (See Notes 1 and 2 in section 4.4 for additional tips concerning the interpretation of 
random forest feature importance values.) 
 
3.5 Sequential Feature Selection with Logistic Regression 
 
As an alternative approach and to probe the robustness of our conclusions, we will apply a Sequential 
Backward Selection (SBS) algorithm combined with logistic regression (32) for the classification of 
active versus non-active compounds. SBS is a model-agnostic feature selection algorithm that evaluates 
different combinations of features, shrinking the subset of features to be considered one by one. Here, 
model-agnostic refers to the fact that SBS can be combined with any machine learning algorithm for 
classification or regression. 
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The SBS algorithm works as follows. This removal of features is repeated in each iteration of the 
algorithm until the desired, pre-specified size of the feature subset is reached. The reason why we chose 
sequential feature selection to deduce functional group matching patterns that are predictive of active and 
non-active molecules is that it presents an intuitive method that has shown to produce accurate and robust 
results. Alternative approaches are discussed in Note 1 in section 4.5. For more information on sequential 
feature selection, please read (17).  
 
Logistic regression is one of the most widely used classification algorithms in academia and industry. 
One of the reasons why logistic regression is a popular choice for predictive modeling is that it is easy to 
interpret as a generalized linear model: The output always depends on the sum of the inputs and model 
parameters. However, note that sequential feature selection can be used with many different machine 
learning algorithms for supervised learning (classification and regression).  
 
To introduce the main concept behind logistic regression, which is a probabilistic model, we need to 
introduce the so-called odds ratio first. The odds ratio computes the odds in favor of a particular event E, 
which is defined as follows, based on the probability p of a positive outcome (for instance, the probability 
that a molecule is active): 
 

odds =
𝑝

(1 − 𝑝)
 

 
Next, we define the logit function, which is the logarithm of the odds ratio: 
 

logit(𝑝) 	= 	log
𝑝

(1 − 𝑝)
 

 
The logit function takes values over the range 0 to 1 (the probability p) and transforms them to real 
numbers that describe the relationship between the functional group matching patterns, multiplied with 
weight coefficients (that need to be learned) and the odds that a given molecule is active: 
 

logit(𝑝(𝑦 = 1|𝑥)) 	= 	𝑤7𝑥7	 + 	𝑤3𝑥3 	+ ⋯+ 𝑤B𝑥B + b	=	 𝑤5𝑥5

B

567

+ b 

 
Here, m is an index over the input features (functional group matches, x), w refers to the weight 
parameters of the parametric logistic regression model, and b refers to the y-axis intercept (typically 
referred to as bias or bias unit in literature). The input to the logit function, 𝑝(𝑦 = 1|𝑥), is the conditional 
probability that a particular molecule is active, given that its functional group matches x.  
 
However, since we are interested in modeling the probability that a given molecule is active, we need to 
compute the function inverse 𝜙	of the logit function, which we can compute as: 
 

𝜙(𝑧) 	= 	
1

1 + 𝑒GH
 

 
Here, z is a placeholder variable defined as follows: 
 

𝑧 = 𝑤5𝑥5

B

567

+ b 
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The logistic regression implementation used in this section learns the weights for the parameters (matched 
chemical features) of the logistic regression model that minimizes the logistic cost function, which is the 
probability of making a wrong prediction given the number of n active and non-active molecule labels in 
the set of compounds, where the binary vector y stores the class labels (1=active, 0=non-active): 
 

𝑙(𝑤) 	= 	 𝑦(5)log(ϕ(𝑧(5)))+(1	 − 	𝑦(5))log(1 − 𝜙(𝑧(5)))
K

567

 

 
For more information about logistic regression, see reference (32). 
 
Now, by combining a logistic regression classifier with a sequential feature selection algorithm, we can 
identify a fixed-size subset of functional groups that maximizes the probability of correct prediction of 
which compounds are active.  
 
Since we are interested in comparing feature subsets of different sizes to identify the smallest feature set 
with the best performance, we can run the SBS algorithm stepwise down to a set with only one feature, 
allowing it to evaluate feature subsets of all sizes, by using the code shown in Figure 14. Furthermore, the 
SBS implementation uses k-fold cross-validation for internal performance validation and selection. In 
particular, we are going to use 5-fold cross-validation.  
 
In 5-fold cross-validation, the dataset is randomly split into k non-overlapping subsets or folds (a 
molecule cannot be in multiple subsets). From the five splits, four folds are used to fit the logistic 
regression model, and one fold is used to compute the predictive performance of the model on held-out 
(test) data. 5-fold cross-validation repeats this splitting procedure five times so that we obtain five models 
and performance estimates. The model performance is then computed as the arithmetic average of the five 
performance estimates. For more details about k-fold cross-validation, please see the online article, 
"Model evaluation, model selection, and algorithm selection in machine learning — Cross-validation and 
hyperparameter tuning" at https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html. 
Also, see Note 2 in section 4.5 for more information on choosing the number of folds in k-fold cross-
validation. 
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Figure 14. Performing sequential feature selection using logistic regression to identify features that discriminate 
between active and non-active molecules. After importing the Python classes for fitting the LogisticRegression 
classifier within the SequentialFeatureSelector, by setting forward=False and floating=False, we specify that 
the sequential feature selector should perform regular backward selection. Then we use the plot_sfs function to 
visualize the results with matplotplib's pyplot submodule. The resulting plot in this figure shows the classification 
accuracy of the logistic regression models trained on different feature subsets (functional group matching patterns) 
via sequential backward selection. The prediction accuracy (0=worst, 1=best), where 1 corresponds to 100% 
accuracy in predicting active versus non-active compounds across the input set, was then computed via 5-fold cross 
validation. The plot presents the average prediction accuracy (whether the model can predict held-out active and 
non-active molecules given their functional group matching patterns) across the 5 different test sets. The error 
margin (pale blue region above and below the dark blue average points) shows the standard error of the mean for the 
5-fold cross validation. 
 
 
As can be seen in Figure 14, the performance of the classification algorithm does not change significantly 
across the different feature subset sizes. The feature subsets with size 2-6 have the highest accuracy, 
indicating that adding more features to the 2-feature subset does not provide additional discrimination 
between active and non-active molecules. The decline in accuracy after adding a seventh feature to the set 
is likely due to the curse of dimensionality (33). In brief, the curse of dimensionality describes the 
phenomenon that a feature space becomes increasingly sparse if we increase the number of dimensions 
(for instance, by adding additional functional group matching features) given a fixed-number of samples 
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in the training set, which will more likely result in overfitting and less accurate results. While the 
execution of the code in Figure 14 provided us with insights regarding the best-performing feature subset 
sizes via SBS in predicting active or non-active molecules, we haven't determined what those features are. 
Since there is no information gain by going beyond two-feature set (Figure 14), we will use the following 
code (Figure 15) to extract the feature names: 
 

 
Figure 15. Code to obtain the feature names of the best-performing feature subset from sequential backward 
selection (Figure 14). The subsets_ attribute of the sequential feature selector (sfs) refers to a Python dictionary 
that stores the feature (functional group matches) indices and cross-validation information. By looking up the 
dictionary entry at index position 2, we can access the feature indices of the 2-feature subset, 10 and 6, and by using 
sfs.subsets_[2] as an index to the feature_labels array that we defined earlier (Figure 13) and reporting the 
feature labels, we can see that "Sulfur" and "Sulfate-Ester" matches are the most discriminatory features of 
active and non-active molecules. 
 
 
The output from the code executed in Figure 14 shows that the 2-feature subset consisting of 'Sulfur' and 
'Sulfate-Ester' matches has the most discriminatory information for separating active and non-active 
molecules as DKPES mimics. This information is consistent with the conclusions drawn from the 
previous random forest and decision tree analyses.  
 
Now we have shown how to use decision trees, random forest models, and logistic regression to analyze 
which features can best discriminate between active and inactive compounds, and to assess the relative 
importance of the different features for discrimination. Such methods provide clearly interpretable 
information on chemical features important for activity, and concurrence between the methods 
strengthens the conclusions. In a related pheromone inhibitor project, we used the results of feature 
importance analysis to drive the selection of compounds in a subsequent round of virtual screening that 
required few compounds to be assayed and resulted in significant enhancement of activity and new 
knowledge about functional group importance. Those compounds are now being tested by members of 
our research team for invasive species behavioral modification in the tributaries of the Laurentian Great 
Lakes under an EPA permit (10). Analysis of whether the set of features and their relative importance 
hold equally well for different subsets of assayed compounds (e.g., steroids versus non-steroids) is 
another valuable direction of inquiry that is described under Note 3 in section 4.5. 
 
3.6 Conclusion 
 
From the decision tree analysis (section 3.3), random forest feature importance estimation (section 3.4), 
and sequential feature selection results (sections 3.5), we can conclude that the sulfate groups (Sulfur, 
Sulfate-Ester, and Sulfur-Oxygen features) are the most discriminatory features for distinguishing active 
from non-active compounds in DKPES-mediated olfactory responses. From the inspection of heat maps 
showing the top 10 active and 10 least active molecules (section 3.2), we also observed that presence of 
sulfate tails are a consistent determinant of activity. One compound consisting only of a sulfate tail 
(ZINC14591952, Figure 8) resulted in 62% signal inhibition, which supports the hypothesis that sulfate 
groups are a key feature of active molecules. Figure 16 summarizes the results from the random forest 
feature importance estimation by comparing the importance values to the proportion of functional group 
matches in active and non-active molecules. 
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Figure 16. Proportion of functional group matches across the 12 active and 44 inactive molecules and relative 
functional group feature importance (from the random forest analysis, Figure 13) mapped onto the DKPES reference 
molecule. DB refers to "double bond." 
 
 
The data in Figure 16 shows that matching 'Sulfur' and 'Sulfur Oxygens' are the most discriminatory 
features for a random forest to distinguish actives from non-actives, and both features also have a high 
rate of occurrence in active versus non-active molecules. Features that do not appear substantially more 
frequently in active molecules than in non-actives (are not discriminatory of activity), for example, 18-
methyl, 19-methyl, 3-keto, or the presence of either the C4-C5 or C6-C7 double bond (“DB”) also have a 
low random forest feature importance. Interestingly, the feature importance of Sulfate-Ester is much less 
than the feature importance of Sulfur or Sulfur-Oxygens, which may be because it is highly correlated 
with the sulfur and sulfur oxygen matches in the sulfate group and thereby, to some extent, redundant. An 
alternative explanation is that the ester oxygen is less highly charged than the terminal sulfate oxygens 
(causing it to make weaker hydrogen bonds) and is also less accessible for interaction with the receptor. 
 
The machine learning techniques presented in this chapter can be used for any kind of data for which a set 
of feature values across a set of objects is used to predict activity (or any observable value determined by 
an experimental technique, for example, solubility, selectivity, reactivity, and so forth). We hope this 
chapter has whetted your appetite for machine learning, which provides robust models that relate features 
of interest to molecular activity and other observables. The code provided here and on the corresponding 
website (https://github.com/psa-lab/predicting-activity-by-machine-learning) makes it possible for you to 
learn and then use these techniques in your own research. For further information about machine learning, 
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and to carry out further explorations with prepared datasets or your own data, we recommend the 
following tutorials and references: Raschka & Mirjalili 2017 (34), Raschka et al. 2016 (35), Friedman et 
al. 2001 (36), Mueller & Guido 2016 (37), and the scikit-learn online tutorials (http://scikit-
learn.org/stable/tutorial/index.html).  
 

4. Notes  

4.1 Loading and Inspecting the Biological Activity Dataset 
 
1. For this section, we used a CSV file where the features and target variable (signal inhibition) were 

stored as columns separated by commas. Note that the read_csv function does not strictly require 
this input format. For instance, pandas's read_csv function supports any possible column delimiter 
(for example, tabs, whitespaces, and so forth), which can be specified via the delimiter function 
argument. For more information about the read_csv function, please refer to the official 
documentation at https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html. 
Furthermore, if you are planning to work with datasets where the features are stored as rows as 
opposed to columns, you can use the transpose method (df = df.transpose()) after loading a 
dataset to transpose the data frame index and columns. 

 
2. Throughout the Methods sections, we assumed that the data frame of activity data was already sorted 

by signal inhibition in decreasing order. While sorting the data frame is not essential for fitting the 
machine learning models in the later section, you may consider sorting your datasets for the heat map 
visualization, to show the 10 molecules with the highest inhibition activity, for example. To sort the 
data frame df, you can use sort_values method of a given pandas data frame object. For example, 
the following code sorts the molecules stored as a data frame df from most active to least active: df 
= df.sort_values('Signal-Inhibition', ascending=False). More information about 
this sort_values method can be found in the official pandas documentation at 
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_values.html. 

 
3. While we recommend working with 3D structures because they provide spatial relationships between 

chemical groups, molecular features can also be derived from 1D string representations of molecules 
or 2D structural representations. For example, the presence of certain substructures or atom types, 
using so-called molecular fingerprints, can be computed using the open-source toolkit OpenBabel 
(https://openbabel.org/docs/dev/Fingerprints/intro.html).  

 
4. To convert a 1D or 2D representation of a molecule into a 3D structure as input for the spatial 

functional group matching in the DKPES dataset that was done via Screenlamp (10) using ROCS 
overlays (OpenEye Scientific Software, Santa Fe, NM; https://www.eyesopen.com/rocs), you may 
find the following tools helpful: 

 
• The CACTUS online SMILES translator and structure file generator 

(https://cactus.nci.nih.gov/translate/). 
• OMEGA (OpenEye Scientific Software, Santa Fe, NM; https://www.eyesopen.com/omega),  

which creates multiple favorable 3D conformers of a given structure from 1D, 2D, or 3D 
representations (38, 39). This software is available free for academic researchers upon completion 
of a license agreement with OpenEye. 
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5. Further, you may find the BioPandas toolkit (40) helpful (http://rasbt.github.io/biopandas/), which 
reads 3D structures from the common MOL2 file format into the pandas data frame format. This 
allows users can be useful if you are working with large MOL2 databases that contain thousands or 
millions of structures that you want to filter for certain properties prior to generating overlays via 
ROCS or compute the functional group matching patterns via Screenlamp (https://github.com/psa-
lab/screenlamp). 

 
 
4.2 Chemical and Functional Groups 
 
1. We chose a 1.3 Å cut-off between overlayed atoms to identify functional group matches in 3D. If two 

molecules share the same atom type at a distance greater than 1.3 Å, this was not considered a 
functional group match. This relatively generous distance cut-off (nearly a covalent bond-length) was 
chosen to account for minor deviations in the crystal structures and overlays when comparing 
functional groups between pairs of molecules. Note that changing the distance threshold generally 
will affect the resulting functional group matching patterns. For instance, the 3-hydroxy group in 
ZINC72400307 (Figure 5) does not overlay with the 3-keto group of the DKPES query (Figure 2) in 
our analysis since the distance between those two atoms is 1.7 Å. We recommend choosing distance 
thresholds up to 1.3 Å. 

 
 
4.3 Tracing Preferential Chemical Group Patterns using Decision Trees 
 
1. While there is technically no minimum number of molecules required for using the techniques 

outlined in this chapter, we recommend collecting datasets of at least 30 structures for the automatic 
inference of functional groups that discriminate between active and non-active molecules. Although 
this is difficult to achieve in practice, an ideal dataset for supervised machine learning would be 
balanced, that is, with an equal number of positive (active) and negative (non-active) training 
examples. While there is no indication that class imbalance was in issue for the DKPES dataset, as the 
results of the decision tree analysis were unambiguous, imbalance may be an issue in other datasets. 
There are many different techniques for dealing with imbalanced datasets, including several 
resampling techniques (oversampling of the minority class or under-sampling of the majority class), 
the generation of synthetic training samples, and reweighting the influence of different class labels 
during the model fitting. A comprehensive review of techniques for working with imbalanced 
datasets can be found in (34). For machine learning with scikit-learn, a compatible Python library that 
has been developed to deal with imbalanced datasets (http://contrib.scikit-learn.org/imbalanced-
learn/) (35). Also note that classifiers in scikit-learn, including the DecisionTreeClassifier, 
accept a class_weight argument, which can be used to put more emphasis on a particular class 
(e.g., active or non-active) during model fitting, thereby preventing that the decision tree algorithm 
becomes biased towards the most frequent class in the dataset. For more information on how to use 
the class_weight parameter of the DecisionTreeClassifier, refer to the documentation at 
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html.  

 
2. Deep, unpruned decision trees with many decision points are notoriously prone to overfitting. This is 

analogous to the overfitting problem in parametric regression, where including more terms with 
adjustable weights allows better fit to a set of training data, while resulting in complex decision rules 
that are hard to interpret and do not perform well on held-out or new data. This is why we preferred 
classification trees over decision trees for regression analysis for the single decision tree and random 
forest analyses in this chapter. 
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3. Note that the problem analyzed here as a case study is not a classical example of machine learning, in 
which a classifier is fit to a training dataset, and then its accuracy of prediction (and generalizability 
to new data) is estimated on held-out data by using a test set or cross-validation techniques. In this 
chapter, we are describing general approaches for analyzing the importance of various functional 
groups for the activity of molecules. Our primary goal is not to build a predictor to classify new 
molecules as active or non-active, although the models developed in this chapter could indeed be used 
in such a way. 

 
4.4 Deducing the Importance of Chemical Groups via Random Forests 
 
1. While the feature importance values provide us with a numeric value to quantify the importance of 

features, these quantities do not provide information about whether the presence or absence of the 
particular functional group matches are characteristic of the active molecules. However, we can easily 
determine whether active molecules match a certain functional group by inspecting the heat map 
visualizations of active and non-active molecules (Figure 9). 

 
2. Concerning the interpretation of feature importance values from random forests, note that if two or 

more features are highly correlated, one feature may be ranked much higher than the other feature, or 
both features may be equally ranked. In other words, the importance or information in the second 
feature may not be fully captured. The potential bias in interpreting the feature importance from 
random forest models has been discussed in more detail by Strobl et al. (41). In general, this issue can 
be pre-assessed by measuring the degree to which series of values for two features across a set of 
compounds are correlated by calculating the Pearson linear correlation coefficient or by calculating 
the Spearman rank correlation coefficient to assess similar ranking of values between the features 
across a set of compounds (which does not assume co-linearity). The Spearman and Pearson 
correlation coefficients can be computed using the peasonr and spearmanr functions from the 
scipy.stats package (please refer to the official SciPy documentation at https://docs.scipy.org/ for 
more information). While the predictive performance of a random forest is generally not negatively 
affected by high correlation among feature variables (multicollinearity), it is recommended to exclude 
highly correlated features from the dataset for feature importance analysis, for instance, via recursive 
feature importance pruning (42). 

 
4.5 Sequential Feature Selection with Logistic Regression 
 
1. Sequential feature selection constitutes just one of many approaches to select feature subsets. 

Univariate feature selection methods that consider one variable at a time and select features based on 
univariate statistical tests, for example, percentile thresholds or p-values. A good review of feature 
selection algorithms can be found in Saeys et al. 2007 (43). However, the main advantage of 
sequential feature selection over univariate feature selection techniques is that sequential feature 
selection analyzes the effect of features on the performance of a predictive model considering the 
features as a synergistic group. Other techniques, related to sequential feature selection, are genetic 
algorithms, which have been successfully used in biological applications to find optimal feature 
subsets in high-dimensional datasets as discussed in Raymer et al 1997 & 2000 (44, 45). 

 
2. We chose 5-fold cross-validation to evaluate the logistic regression models in the sequential 

backward selection, since k=5 it is a commonly used default value in k-fold cross-validation. 
Generally, small values for k are computationally less expensive than larger values of k (due to the 
smaller training set sizes and fewer iterations). However, a choosing a small value for k increases the 
pessimistic bias, which means the performance estimate underestimates the true generalization 
performance of a model. On the other hand, increasing the size of k increases the variance of the 



 

 27 

estimate. Unfortunately, the No Free Lunch Theorem (46) — stating that there is no algorithm or 
choice of parameters that is optimal for solving all problems — also applies here (as shown in (47). 
For an empirical study of bias, variance, and bias-variance trade-offs in cross-validation, also see 
(48). 

 
3. The chemical features identified as most important by machine learning will depend on the chemical 

diversity within the set of molecules for which assay results and chemical structures are analyzed. For 
instance, if only steroid compounds are tested versus only non-steroids, likely the chemical features 
found to be most important will differ. In our case, for the steroid set, the side groups providing 
specific interactions were most important (since the steroid scaffold is in common to all of them), 
whereas for the non-steroids, compounds that mimic and shape and hydrophobic interactions of the 
steroidal pheromone may also be important. Thus, considering the set of compounds to be analyzed, 
and testing the generalizability of the features derived is worth some thought. If you have different 
chemical classes of compounds to analyze, and a significant number of compounds in each, you can 
carry out the machine learning analysis of the most important features for each of the groups of 
compounds separately, as well as all of the compounds together, to discern the extent to which highly 
ranked features that discriminate between actives and inactives are shared among compounds based 
on different chemical scaffolds. 

 
Acknowledgements 
 
This research was supported by funding from the Great Lakes Fishery Commission from 2012-present 
(Project ID: 2015_KUH_54031). We gratefully acknowledge OpenEye Scientific Software (Santa Fe, 
NM) for providing academic licenses for the use of their ROCS, Omega, QUACPAC (molcharge), and 
OEChem toolkit software. We also wish to express our special appreciation to the open source 
community for developing and sharing the freely accessible Python libraries for data processing, machine 
learning, and plotting that were used for the data analysis presented in this chapter. 
 

5. References  
1.  Ripphausen P, Nisius B, Bajorath J (2011) State-of-the-art in ligand-based virtual screening. Drug 

Discov Today 16:372–376. 
2.  Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular 

representations, data mining methods, new application areas, and performance evaluation. J Chem 
Inf Model 50:205–216. 

3.  Pérez-Nueno VI, Ritchie DW, Rabal O, Pascual R, Borrell JI, Teixidó J (2008) Comparison of 
ligand-based and receptor-based virtual screening of HIV entry inhibitors for the CXCR4 and 
CCR5 Receptors using 3D Ligand shape matching and ligand-receptor docking. J Chem Inf Model 
48:509–533. 

4.  Hawkins PCD, Skillman  AG, Nicholls A (2007) Comparison of shape-matching and docking as 
virtual screening tools comparison of shape-matching and docking as virtual screening tools. 
50:74–82. 

5.  Sukuru SCK, Crepin T, Milev Y, Marsh LC, Hill JB, Anderson RJ, Morris JC, Rohatgi A, 
O’Mahony G, Grøtli M, others (2006) Discovering new classes of Brugia malayi asparaginyl-
tRNA synthetase inhibitors and relating specificity to conformational change. J Comput Aided 
Mol Des 20:159–178. 

6.  Lyne PD (2002) Structure-based virtual screening: An overview. Drug Discov Today 7:1047–
1055. 



 

 28 

7.  Ghosh S, Nie A, An J, Huang Z (2006) Structure-based virtual screening of chemical libraries for 
drug discovery. Curr Opin Chem Biol 10:194–202. 

8.  Li Q, Shah S (2017) Structure-based virtual screening. Protein Bioinforma From Protein Modif 
Networks to Proteomics 111–124. 

9.  Yan X, Liao C, Liu Z, T Hagler A, Gu Q, Xu J (2016) Chemical structure similarity search for 
ligand-based virtual screening: Methods and computational resources. Curr Drug Targets 
17:1580–1585. 

10.  Raschka S, Scott AM, Liu N, Gunturu S, Huertas M, Li W, Kuhn LA (2017) Enabling hypothesis-
driven prioritization of small molecules in big databases: Screenlamp and its application to GPCR 
inhibitor discovery. Submitted  

11.  Zavodszky MI, Rohatgi A, Van Voorst JR, Yan H, Kuhn LA (2009) Scoring ligand similarity in 
structure-based virtual screening. J Mol Recognit 22:280–292. 

12.  Buhrow L, Hiser C, Van Voorst JR, Ferguson-Miller S, Kuhn LA (2013) Computational 
prediction and in vitro analysis of potential physiological ligands of the bile acid binding site in 
cytochrome c oxidase. Biochemistry 52:6995–7006. 

13.  Kubinyi H, Folkers G, Martin YC (2006) 3D QSAR in drug design: recent advances. Springer 
Science & Business Media, Berlin. 

14.  Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med 
Chem 10:95–115. 

15.  Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC 
Press, Boca Raton 

16.  Breiman L (2001) Random forests. Mach Learn 45:5–32. 
17.  Ferri F, Pudil P, Hatef M, Kittler J (1994) Comparative study of techniques for large-scale feature 

selection. Pattern Recognit Pract IV 1994:403–413. 
18.  Raschka S, (2017) rasbt/mlxtend: Version 0.7.0, doi: 10.5281/zenodo.816309 
19.  Hansen GJA, Jones ML (2008) A rapid assessment approach to prioritizing streams for control of 

Great Lakes sea lampreys (Petromyzon marinus): a case study in adaptive management. Can J Fish 
Aquat Sci 65:2471–2484. 

20.  Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for 
virtual screening. J Chem Inf Model 45:177–82. 

21.  Allen F (2002) The Cambridge Structural Database: A quarter of a million crystal structures and 
rising. Acta Crystallogr Sect B Struct Sci 58:380–8. 

22.  Johnson NS, Yun S-S, Li W (2014) Investigations of novel unsaturated bile salts of male sea 
lamprey as potential chemical cues. J Chem Ecol 40:1152–1160. 

23.  Van Rossum G (2007) Python programming language. In: USENIX Annu. Tech. Conf. p 36 
24.  Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient 

numerical computation. Comput Sci Eng 13:22–30. 
25.  Jones E, Oliphant T, Peterson P (2001) SciPy: Open source scientific tools for Python. 

http//www.scipy.org/  
26.  McKinney W, others (2010) Data structures for statistical computing in Python. In: Millman J, 

vand der Walt S (eds) Proc. 9th Python Sci. Conf. pp 51–56 
27.  Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:90–95. 
28.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 

P, Weiss R, Dubourg V (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 
12:2825–2830. 

29.  Aiello A, Carbonelli S, Esposito G, Fattorusso E, Iuvone T, Menna M (2000) Novel bioactive 
sulfated alkene and alkanes from the Mediterranean ascidian Halocynthia papillosa. J Nat Prod 
63:1590–1592. 

30.  Raschka S (2015) Python Machine Learning, 1st ed. Packt Publishing, Birmingham 
31.  Louppe G (2014) Understanding random forests: From theory to practice. Ph.D. thesis. 
32.  Walker SH, Duncan DB (1967) Estimation of the probability of an event as a function of several 



 

 29 

independent variables. Biometrika 54:167–179. 
33.  Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf theory 

14:55–63. 
34.  Raschka S, Mirjalili V (2017) Python machine learning, 2nd ed. Packt Publishing, Birmingham 
35.  Raschka S, Julian D, Hearty J (2016) Python: Deeper insights into machine learning, 1st ed. Packt 

Publishing, Birmingham 
36.  Hastie T, Tibshirani R, Friedman J, Hastie T, Tibshirani R (2001). Springer series in statistics, 

New York  
37.  Müller AC, Guido S (2017) Introduction to machine learning with Python: a guide for data 

scientists. O'Reilly Media, Sebastopol. 
38.  Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation 

with OMEGA: Algorithm and validation using high quality structures from the Protein Databank 
and Cambridge Structural Database. J Chem Inf Model 50:572–84. 

39.  Hawkins PCD, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set 
and the analysis of failures. J Chem Inf Model 52:2919–2936. 

40.  Raschka S (2017) BioPandas: Working with molecular structures in pandas DataFrames. J Open 
Source Softw. 

41.  Strobl C, Boulesteix A, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance 
for random forests. BMC bioinformatics 9:307. 

42.  Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, 
and characteristics of classification and regression trees, bagging, and random forests. Psychol 
Methods 14:323. 

43.  Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. 
Bioinformatics 23:2507–2517. doi: 10.1093/bioinformatics/btm344 

44.  Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK (2000) Dimensionality reduction using 
genetic algorithms. IEEE Trans Evol Comput 4:164–171. 

45.  Raymer ML, Sanschagrin PC, Punch WF, Venkataraman S, Goodman ED, Kuhn LA (1997) 
Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-
neighbors genetic algorithm. J Mol Biol 265:445–464. 

46.  Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 
8:1341–1390. 

47.  Bengio Y, Grandvalet Y (2004) No unbiased estimator of the variance of k-fold cross-validation. J 
Mach Learn Res 5:1089–1105. 

48.  Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model 
selection. Int Jt Conf Artif Intell 14:1137–1143. 

 


