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	 1.	

Abstract 27	

Background: The beetle family Cerambycidae Latreille (longhorned beetles; >35,000 species) 28	

is the most diverse radiation of wood-feeding animals on Earth. However, relatively little is 29	

known about the genomic basis of wood-feeding (xylophagy) in beetles. We undertook genome 30	

and transcriptome sequencing and annotation, gene expression assays, studies of plant cell 31	

wall degrading enzyme substrate specificity, and other functional and comparative genomic 32	

studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive 33	

insect species capable of inflicting severe feeding damage on many important orchard, 34	

ornamental and forest tree species. Complementary comparative studies of genes encoding key 35	

enzymes involved in the digestion of woody plant tissues or the detoxification of plant 36	

allelochemicals were undertaken with the genomes of the Asian longhorned beetle and 14 37	

additional insects, including the newly sequenced emerald ash borer beetle (Agrilus 38	

planipennis) and bull-headed dung beetle (Onthophagus taurus) genomes, both of which were 39	

studied for the first time. 40	

Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes 41	

that possess the ability to degrade the main polysaccharide networks in plant cell walls, detoxify 42	

plant allelochemicals, and otherwise facilitate specialized feeding on woody plants. The Asian 43	

longhorned beetle has the metabolic plasticity needed to feed on plant species with different 44	

chemistries, permitting colonization of a diverse range of host plants, and contributing to its 45	

highly invasive nature. Its metabolic capacity is further expanded through affiliations with gut 46	

microbes. Large expansions of chemosensory genes involved in the reception of pheromones 47	

and plant kairomones are consistent with the complexity of chemical cues used by the Asian 48	

longhorned beetle to find host plants and mates. 49	

Conclusions: Our studies reveal that amplification and functional divergence of genes 50	

associated with specialized feeding on plants, including genes previously shown to have been 51	

originally obtained by beetles via horizontal gene transfer from fungi and bacteria, were 52	

fundamental to the addition, expansion and enhancement of the metabolic repertoire of the 53	

Asian longhorned beetle, certain other beetles, and to a lesser degree, other phytophagous 54	

insects. Our results thus begin to establish a genomic basis for the evolutionary success of 55	

insects – especially beetles – on plants. 56	

Keywords: Chemoperception, Detoxification, Glycoside hydrolase, Horizontal gene transfer, 57	

Phytophagy, Xylophagy 58	
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Background 59	

Beetles (order Coleoptera; >400,000 described extant species) account for more than 20% of 60	

metazoans. The causes of this apparent “inordinate fondness” [1] are widely debated, but the 61	

evolution of specialized trophic interactions with plants – such as wood-feeding (xylophagy) – is 62	

assumed to have played an important role [2, 3]. The beetle family Cerambycidae Latreille 63	

(>35,000 species; longhorned beetles) is the most diverse radiation of wood-feeding animals on 64	

Earth. Most species complete their entire development while feeding exclusively on the tissues 65	

of woody plants. Recent work has established the Asian longhorned beetle (Anoplophora 66	

glabripennis) as a model for studies of the digestive physiology of wood-feeding beetles (see 67	

references herein). A. glabripennis is a globally significant invasive species, capable of inflicting 68	

severe damage on many economically-important orchard, ornamental and forest trees (>100 69	

species) [4]. Its potential economic impact in the United States alone, if uncontrolled, has been 70	

conservatively estimated at $889 billion (adjusted for inflation, May 2016) [5]. Early stage A. 71	

glabripennis larvae are specialized wood-borers, feeding in galleries under bark in the 72	

subcortical tissue and phloem of both healthy and susceptible living trees (Fig. 1). Larger, later 73	

stage larvae tunnel deep into the heartwood, where they continue feeding and complete 74	

development. Adults are comparatively short-lived external feeders, consuming small amounts 75	

of tissue from host tree leaves and twigs [4]. 76	

Nitrogen, free amino acids, and protein are typically scarce in wood, and access to sugars, 77	

minerals, and other key nutrients is severely impeded by lignified plant cell walls. Furthermore, 78	

woody plant tissues contain a diversity of allelochemicals that must be detoxified or sequestered 79	

when eaten [6]. Successful feeding on woody plants therefore requires specialized metabolic 80	

adaptations. The genomes of A. glabripennis and certain other phytophagous beetles are 81	

known to contain genes encoding plant cell wall degrading enzymes (PCWDEs)	[7-9]. PCWDEs 82	

degrade cellulose, hemicellulose or pectin (the main polysaccharide networks in plant cell 83	

walls), liberating sugars, minerals and other nutrients from woody plant tissues. Some 84	
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cerambycid PCWDEs were originally obtained via HGT from fungi or bacteria, and have 85	

subsequently diversified to form multi-gene families [10]. This is in contrast to other wood 86	

feeding insects, e.g., termites and some ants and cockroaches, which have broadly similar 87	

metabolic capabilities conveyed by symbionts whose genomes contain many of the same 88	

families of genes [11]. Additionally, lignin is degraded during passage through the A. 89	

glabripennis gut [12], suggesting a role for enzymes secreted into the gut by the beetle, its gut 90	

microbiota, or both parties. In vitro, PCWDEs and lignin-degrading enzymes encoded by the 91	

genomes of insects and their symbionts may be important in a wide range of biotechnological 92	

processes including the production of biofuels and food [7, 8]. 93	

We investigated the genomic basis of specialized phytophagy on woody plants by A. 94	

glabripennis through genome and transcriptome sequencing and annotation, comparative 95	

genomic analyses, gene expression assays, and functional genomic studies. Complementary 96	

comparative analyses involving the A. glabripennis genome and 14 additional insect genomes, 97	

including two additional beetles whose genomes are studied here for the first time – the emerald 98	

ash borer (Agrilus planipennis, family Buprestidae), and the bull-headed dung beetle 99	

(Onthophagus taurus, family Scarabaeidae) – were undertaken to reconstruct broader patterns 100	

in the evolution of insect (especially beetle) genes encoding enzymes involved in the digestion 101	

of woody plant tissues or detoxification of plant allelochemicals. 102	

Results and discussion 103	

General genome features 104	

134X sequence coverage of the A. glabripennis genome was generated and assembled from a 105	

single female A. glabripennis larva, creating a draft genome reference assembly of 710 Mb with 106	

contig and scaffold N50s of 16.5 Kb and 659 Kb, respectively (Additional file 1: Table S3). While 107	

the A. glabripennis genome (female: 981.42 ±3.52 Mb, male: 970.64 ±3.69 Mb) is much larger 108	

than the four existing published beetle genomes (ranging from 163-208 Mb) [13-16], it is 109	



	 4.	

average-sized for the order Coleoptera (mean=974 Mb) [17]. As in other draft genome 110	

assemblies, repetitive heterochromatin sequences could not be assembled, accounting for the 111	

differences between assembled sequence and genome sizes. The proportion of un-assembled 112	

genome in A. glabripennis is similar to that seen in other insect genome assemblies. 22,035 113	

gene models were annotated using a customized MAKER pipeline [18]. Manual curation 114	

involved 1,144 gene models (Additional file 1: Table S4; Additional file 2: Table S6). The 115	

automated annotations and manual curations were merged into a non-redundant Official Gene 116	

Set (OGS v1.2) with 22,253 protein-coding gene models and 66 pseudogenes (Additional file 2: 117	

Table S6), in contrast to the 13,526-19,222 gene models reported for existing published beetle 118	

genomes. The completeness of the A. glabripennis genome assembly and OGS were assessed 119	

using benchmarking sets of universal single-copy orthologs (BUSCOs) [19] and compared with 120	

14 other insect genomes (Fig. 2). The A. glabripennis gene set had slightly fewer missing 121	

BUSCOs (~3.3%) than most of the other genomes studied. Comparing BUSCO results from the 122	

A. glabripennis OGS to those obtained from searching the entire genome sequence, the number 123	

of missing genes was reduced, indicating that some genes were missed during the automated 124	

annotation process. Nonetheless, except for unassembled heterochromatin and other repetitive 125	

regions, the A. glabripennis genome is well represented and of high quality.  126	

OrthoDB orthology delineation [20] revealed that A. glabripennis has a conserved core of 127	

5,029 genes classified in orthologous groups (OGs) with orthologs from the 14 other insect 128	

genomes studied (Fig. 3). A. glabripennis has a high number of widespread orthologs (6,880 129	

total) in OGs that are not universal but nevertheless have representatives from each of the three 130	

sets of species studied (see Methods and Additional file 1: Section I.6). About half (3,346) of 131	

these genes are maintained as single-copy orthologs, while the remainder (3,534) appear to 132	

have duplicated. Such duplications are more frequent in A. glabripennis than in most of the 133	

other species, but are not as extreme as in Acyrthosiphon pisum (pea aphid, family Aphididae) 134	

(8,779). Examining OGs with orthologs from only two of the three species sets showed that the 135	
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Coleoptera have maintained more ancient orthologs than the Diptera and Lepidoptera. Of the 136	

five Coleoptera genomes studied, A. glabripennis has the most Coleoptera-specific genes 137	

(5,229), suggestive of a high degree of adaptive novelty. Of these, 1,210 have identifiable 138	

orthologs in the other beetles and 2,789 show no clear orthology but do have homologs in other 139	

arthropods, i.e., they are likely divergent gene copies, consistent with the large numbers of 140	

paralogs in the A. glabripennis genome. This leaves a small set of 1,003 unique A. glabripennis 141	

genes with no homology to the other arthropod genes. A phylogenomic analysis of orthologs 142	

(Fig. 2) places A. glabripennis sister to Dendroctonus ponderosae (mountain pine beetle, family 143	

Curculionidae), as expected [21, 22]. 144	

In addition to glycoside hydrolase (GH) family genes (discussed below), sixteen HGT 145	

candidates were found from bacteria to A. glabripennis, and junctions between the insertion and 146	

flanking sequences were confirmed in multiple libraries (Additional file 1: Table S7). Four 147	

candidates were from bacteria most closely related to Wolbachia. Other represented potential 148	

sources include Rickettsia, Calothrix, Clostridium and Brachyspira. None of these HGT 149	

candidates showed significant expression in RNA-seq reads for adult males, females or larvae, 150	

although this does not rule out expression in other stages or tissue-specific expression of these 151	

candidates below detection in whole organism RNA-seq. Following HGT, insertions will either 152	

degrade by mutation and deletion, or (occasionally) evolve into functional genes. The sixteen 153	

HGTs above are likely recent insertions. Recent insertions have similarly been detected in other 154	

arthropod genomes using the DNA based pipeline [23, 24]. In contrast, the GH HGTs are more 155	

ancient insertions that have evolved into functional genes [25-29]. No microbial scaffolds were 156	

found in the A. glabripennis assembly, likely because the tissues used for sequencing (see 157	

Additional file 1) are not known to be associated with microbes. 158	

A. glabripennis harbors similar numbers and kinds of genes involved in growth, development 159	

and reproduction as T. castaneum (and other insects) (Additional file 1: Section VI). Some of 160	

these gene clusters (e.g., homeodomain transcription factors) correlate in scale with its genome 161	
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size (~5X larger than T. castaneum) but also show A. glabripennis-specific paralogous 162	

expansion and gene dispersal. Key components of the genetic mechanisms underlying 163	

diapause in other insects were also found in the A. glabripennis genome. In contrast, A. 164	

glabripennis appears to posses an incomplete methylation machinery, including the 165	

maintenance methyltransferase DNMT1, but lacking the de novo methyltransferase DNMT3, 166	

which was lacking from both the genome assembly and the unassembled raw reads (Additional 167	

file 1: Section VI.10). While a similar situation is found in both T. castaneum and Drosophila 168	

melanogaster (common fruit fly, family Drosophilidae), many other insects, including other 169	

beetles such as O. taurus [30] and Nicrophorus vespilloides [13] (burying beetle, family 170	

Silphidae), have retained the complete machinery. A full description of the genes studied in the 171	

A. glabripennis genome can be found in the supplementary materials (Additional file 1). 172	

Plant cell wall degradation 173	

86 glycoside hydrolase (GH) family genes (Fig. 4 and Table 1; Additional file 1: Figure S18 and 174	

Tables S9, S17) were manually annotated in the A. glabripennis genome, more than are known 175	

from any other insect. These include a large expansion of 57 GH1 genes, which putatively 176	

exhibit (amongst others) β-glucosidase and β-galactosidase activities. Only 15 GH1 genes are 177	

known from T. castaneum [15], and only 19 from D. ponderosae [14]. We manually annotated 178	

11 putative endo- and exoglucanases (cellulases), members of GH9, subfamily 2 of GH5, GH45 179	

and GH48, and 18 GH28 genes encoding putative pectin-degrading polygalacturonases. 180	

Previous work has shown that a number of GH family genes have been acquired from microbes 181	

by HGT [e.g., references 23-29; Table 1], and Figure 4 shows the distribution of these and 182	

endogenous GHs in the 15 arthropod genomes studied herein. The genome of A. glabripennis 183	

was unique among the 15 species studied in containing matches to GH5 (IPR001547; see Fig. 184	

4), whose members exhibit predominantly endo- and/or exo-glucanase, mannanase and 185	

xylanase activities. 186	



	 7.	

Table 1. Plant cell wall degrading enzymes identified in the A. glabripennis genome assembly 187	

by manual annotation. Genes encoding GH9 cellulases have an ancient origin in animals [25]. 188	

The other beetle-derived GH families involved in plant cell wall digestion have a more recent 189	

origin and were putatively obtained via HGT from bacteria or fungi. GH5 subfamily 2 genes were 190	

likely acquired via HGT from Bacteroidetes [26]. GH45 genes were likely acquired by the last 191	

common ancestor (LCA) of the Phytophaga via HGT from a fungus [27, 28]. Amino acid 192	

sequences of beetle GH48 cellulases are similar to bacterial cellobiosidases, but their 193	

function(s) remain unclear; they may have evolved to scavenge nitrogen by degrading chitin in 194	

the gut or diet [31], e.g., from host plant tissues containing fungi, or from fungi resident in the gut 195	

(e.g., yeasts, Fusarium solani) which are thought to concentrate nitrogen and synthesize 196	

essential amino acids [9, 29, 32]. GH48s are constitutively highly expressed in A. glabripennis 197	

larvae (Fig. 5), and their induction in larvae feeding in a nutrient poor environment (reported 198	

herein) is consistent with a putative role in nutrient scavenging. They were most likely acquired 199	

by the LCA of the Phytophaga via HGT from a bacterial donor [27, 29]. GH28 genes were likely 200	

acquired by the LCA of the Phytophaga via HGT from an ascomycete fungus and subsequently 201	

expanded and diversified, but lost in the longhorned beetle subfamily Lamiinae (which includes 202	

A. glabripennis). After this loss, a GH28 gene was apparently re-acquired by Lamiinae via HGT 203	

from a fungal donor [10]. 204	

Gene family 
 

Putative function 
Genes 

total 
Pseudogenes 

Cellulose/Hemicellulose Degradation 

GH9 Endo-β-1,4-glucanase 1 0 

GH45 Endo-β-1,4-glucanase 2 0 

GH5 subfamily 2 Endo/exo-β-1,4-glucanase 6 0 

GH48 Reducing end-acting cellobiohydrolase 2 0 

GH1 β-glucosidase (myrosinase, cyanogenic β-

glucosidase) 

57 3 

Pectin Degradation 

GH28 Polygalacturonase 18 0 
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We investigated diet-dependent regulation of GH family genes via an RNA-Seq based 205	

differential expression analysis of A. glabripennis larvae feeding on artificial diet versus the 206	

wood of living sugar maple trees, a preferred host. All GH5 and GH45 cellulases were 207	

expressed at least 2-fold higher in larvae feeding in sugar maple (Fig. 5) and have likely roles in 208	

converting cellulose into more easily digestible cello-oligosaccharides. Over 30 GH1 genes 209	

were most highly expressed in larvae feeding in sugar maple. Many of these genes are putative 210	

β-glucosidases and likely convert cellobiose and other oligosaccharides released from the plant 211	

cell wall into monosaccharides. GH1 enzymes can have broad catalytic and substrate 212	

specificities, so GH1 genes induced in larvae feeding in sugar maple could also function as β-213	

xylosidases, β-glucuronidases, β-galactosidases, β-mannosidases, or exo-β-1,4-glucanases, 214	

serving to hydrolyze substrates released from the hemicellulose matrix. Additionally, many β-215	

glucosidases also have known roles in detoxification [33, 34] (see below). Twelve GH28 genes 216	

showed elevated expression in larvae feeding in sugar maple, and their homologs are known to 217	

function as polygalacturonases in relatives of A. glabripennis [7, 10]. Thus, pectinous 218	

components of plant primary cell walls may serve as a significant source of sugars for early 219	

instar A. glabripennis larvae. GH35 genes were also induced in A. glabripennis larvae feeding in 220	

sugar maple. These had highest scoring BLAST alignments to β-galactosidase and could play 221	

roles in processing β-1,4 linked galactose oligomers released from the plant cell wall matrix. 222	

GH30 genes were also highly induced in larvae feeding in sugar maple. While some of these 223	

were expressed in both larvae and adults, two were expressed exclusively in larvae 224	

(AGLA015835 and AGLA015837) and may be important for digesting components of plant 225	

secondary cell walls. Consistent with this hypothesis, these two GH30 genes were strongly 226	

upregulated in insects feeding in sugar maple compared to artificial diet with log fold change 227	

expression values of 6.7 (FDR=1.14e-05) and 6.0 (FDR=1.83e-07). Additionally, three other 228	

GH30 genes were more highly expressed in larvae feeding in sugar maple including 229	

AGLA015834 (logFC=5.0; FDR=2.96e-11), AGLA015831 (logFC=1.96; FDR=0.029), and 230	
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AGLA001694 (logFC=1.80; FDR=0.05). Although the expression patterns of these genes seem 231	

consistent with a role in breaking down secondary cell wall polysaccharides in the larval stage, 232	

the precise reactions catalyzed by these gene products could not be predicted based on 233	

electronic annotations. 234	

To determine substrate specificity and the contribution of enzymes encoded by GH family 235	

genes to the metabolism of plant cell wall polysaccharides, 15 of the 18 known A. glabripennis 236	

GH28 genes (putative polygalacturonases) were functionally characterized in vitro. 237	

Heterologous expression succeeded for all but GH28-4 (AGLA010098) (Additional file 1: Figure 238	

S5). Most GH28 proteins were active against at least one homogalacturonan polymer in plate 239	

assays. A group of phylogenetically related proteins, GH28-1 (AGLA010095), -2 (AGLA010096), 240	

-3 (AGLA010097) and -5 (AGLA010099), all located in tandem on one genomic scaffold, 241	

showed no activity against homogalacturonan polymers (Additional file 1: Figures S5, S6B, S7). 242	

However, they did exhibit exopolygalacturonase activity, similar to a previously characterized 243	

GH28 from a near relative of A. glabripennis [7] (Additional file 1: Figure S6C). GH28-11 244	

(AGLA002350), the only polygalacturonase expressed in both A. glabripennis larvae and adults 245	

[7], and GH28-17 (AGLA025090), both functioned as endopolygalacturonases; however, 246	

accumulation of galacturonic acid monomers was also observed for GH28-11, indicating that it 247	

could also function as an exopolygalacturonase (Additional file 1: Figure S6C). Overall, the 248	

repertoire of GH28 enzymes encoded by the A. glabripennis genome contains both endo- and 249	

exo-polygalacturonases and is able to act on substrates with varying degrees of methylation. 250	

These enzymes are highly complementary, allowing A. glabripennis to efficiently decompose 251	

pectinous homogalacturonan polymers present in the primary cell walls of living woody plant 252	

tissues. 253	

Six GH5 genes, two GH45 genes, and one GH9 gene were also functionally characterized 254	

in vitro. GH5-1 (AGLA002353) functioned as an endo-β-1,4-xylanase (EC 3.2.1.8), GH5-2 255	

(AGLA002352), GH5-5 (AGLA006972), GH45-1 (AGLA005419) and GH45-2 (AGLA005420) 256	
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functioned as endo-β-1,4-glucanases (EC 3.2.1.4), and GH5-2 showed endo-β-1,4-257	

xyloglucanase activity (EC 3.2.1.151) (Additional file 1: Figures S8B, S9). GH5-2 also 258	

hydrolyzed carboxymethylcellulose (CMC), indicating that enzymes encoded by this gene 259	

possess the ability to endohydrolyse the 1,4-β-D-glucosidic linkages in both CMC and 260	

xyloglucan and may function to degrade both cellulose and components of hemicellulose in 261	

vivo. GH5-3 (AGLA002354), GH5-4 (AGLA002351), GH5-6 (AGLA016376) and GH9 262	

(AGLA010313) did not harbor any enzymatic activity against the substrates tested, indicating 263	

that they are not endo-acting enzymes. To investigate how GH5 enzymes degrade their 264	

substrates, the products were subsequently analyzed by thin layer chromatography (TLC) 265	

(Additional file 1: Figure S8C and Methods), validating the roles of GH5-1 as a xylanase, GH5-2 266	

as a dual-acting xyloglucanase/endoglucanase, and GH5-5 as an endoglucanase. Furthermore, 267	

although no zone of clearing was observed for GH5-6 in an agarose diffusion assay, 268	

accumulations of glucose and cellobiose were observed via TLC after incubation with CMC, 269	

suggesting that it functions as an exo-β-1,4-glucanase (Additional file 1: Figure S8C). None of 270	

these enzymes had the ability to degrade crystalline cellulose substrates. However, Geib et al. 271	

[32] observed activity against Avicel in enzyme extracts prepared from larval A. glabripennis 272	

guts. This suggests that (a) GH5 and GH45 cellulases act synergistically in vivo to degrade 273	

these substrates, (b) other A. glabripennis-encoded enzymes besides those characterized in 274	

this study possess the ability to degrade Avicel, or (c) that enzymes produced by the gut 275	

microbial community are responsible for the aforementioned previously observed activity. 276	

Notably, the cellulases encoded by numerous members of the A. glabripennis gut microbial 277	

community possess carbohydrate binding domains, which could enhance the efficiency of these 278	

enzymes against crystalline substrates by allowing them to bind and degrade their substrates in 279	

a processive manner [29, 32]. Thus, the A. glabripennis genome encodes at least 3 families of 280	

cellulases and hemicellulases (subfamily 2 of GH5, GH9 and GH45) and one family of 281	

polygalacturonases (GH28) that provide it with an arsenal of enzymes capable of degrading the 282	
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main polysaccharides of the cellulose and hemicellulose networks in both primary and 283	

secondary plant cell walls. 284	

GH28, GH45 and subfamily 2 of GH5 were collectively detected only in the three 285	

phytophagous beetle genomes studied (A. glabripennis, A. planipennis and D. ponderosae) 286	

(Fig. 4; Additional file 1: Figure S18) and were lacking from the 12 other insect genomes. 287	

Specifically, GH28 was detected in A. glabripennis, A. planipennis and D. ponderosae, GH45 288	

was detected only in A. glabripennis and D. ponderosae (sister taxa in our phylogeny, spanning 289	

the basal split in the clade Phytophaga [36] (Fig. 2), and subfamily 2 of GH5 was detected 290	

exclusively in A. glabripennis. Subfamily 2 of GH5 genes have been found in at least one other 291	

cerambycid [7] and may be unique to superfamily Chrysomeloidea (leaf beetles, cerambycids 292	

and their relatives). A. glabripennis, A. planipennis and D. ponderosae are all specialized 293	

phytophages belonging to species-rich taxonomic groups of beetles that feed on the subcortical 294	

tissues of woody plants and interact with specialized suites of gut microbes. Interestingly, the 295	

genomes of the wood-feeding termites Macrotermes and Zootermopsis lack all three of the 296	

aforementioned gene families. However, these genes are present in the genomes of their gut 297	

symbionts. This is in contrast to the phytophagous beetles we studied, whose ancestors 298	

obtained these genes (in their genomes) via HGT from bacteria and fungi [8, 14] (Additional file 299	

1: Figures S5, S9). These genes subsequently diversified in beetle genomes to form multi-gene 300	

families [10]. Notably, the GH28 family genes we annotated in A. planipennis were apparently 301	

acquired independently (via HGT from an ascomycete fungus donor) from those in A. 302	

glabripennis and D. ponderosae. Independently-acquired GH28 genes are also known from 303	

phytophagous Hemiptera in the species-rich family Miridae [37]. 304	

GH1 family genes can encode enzymes having both digestive and non-digestive functions. 305	

23 A. glabripennis GH1 sequences had ~44% identity to sequences annotated as myrosinases 306	

(MYR) [30] in the T. castaneum genome [38]. One sequence closely matches known 307	

myrosinase active site motifs. For some insects, including flea beetles, myrosinases are known 308	



	 12.	

to synergize alarm or aggregation pheromones [39, 40]. Non-Brassicacaeous, woody plant 309	

sources of glucosinolytes, which are the substrates detoxified by myrosinase, are present in the 310	

A. glabripennis native range [41]. An additional possibility is that one or more of these A. 311	

glabripennis sequences is a cyanogenic β-glycosidase [34]. Toxic cyanogenic glycosides are 312	

used by some plants (including known hosts of A. glabripennis) as a defense against insect-313	

feeding, analogous to the myrosinase system. Interestingly, five A. glabripennis GH1 sequences 314	

are intermediate in similarity to known myrosinases and a known cyanogenic β-glycosidase 315	

(Additional file 1: Figure S16). 316	

Microbes in the gut of A. glabripennis are known to have definitive roles in nutrient 317	

biosynthesis and nutrient recycling, helping the beetle to thrive under nutrient poor conditions 318	

[32, 42, 43]. A. glabripennis microbes encode an arsenal of laccases, peroxidases, aldo-keto 319	

reductases, dyp-type peroxidases [29], and at least one lignin peroxidase, which is encoded by 320	

a fungal symbiont belonging to the Fusarium solani species complex [44]. Several of the 321	

aforementioned genes are actively expressed in the A. glabripennis larval midgut [32]. While 322	

these enzymes have not been functionally characterized in vitro, they may facilitate lignin 323	

degradation in the A. glabripennis gut. The A. glabripennis genome itself may also encode 324	

genes that facilitate lignin degradation. A. glabripennis encodes eight genes with hemocyanin 325	

domains, three of which are significantly more highly expressed in larvae feeding in sugar 326	

maple, including the gene models AGLA002479 (2.1 log-fold upregulation), AGLA002478 (2.5 327	

log-fold upregulation), and AGLA001233 (3.4 log-fold upregulation). All three genes were 328	

originally thought to function as storage hexamer proteins. However, the ability of at least one 329	

termite-derived hemocyanin highly expressed in salivary glands to oxidize model lignin 330	

compounds and other aromatic compounds in vitro [45], and the high expression levels of these 331	

three genes in multiple organisms that feed in wood [46], could signal that they work 332	

synergystically with gut microbes in A. glabripennis to facilitate oxidative degradation of 333	

prominent linkages in the lignin polymer and/or other biopolymers in vivo. 334	
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Detoxification of plant allelochemicals 335	

To gain further insights into the genomic basis of the broad host range of A. glabripennis (>100 336	

known host tree species) and its concomitant invasiveness, we studied gene families 337	

hypothesized to encode key enzymes involved in the detoxification of plant allelochemicals 338	

(Additional file 1: Tables S17-S26 and Figures S18-S22). Cytochrome P450s (CYP450; 339	

Additional file 1: Figure S21 and Tables S20, S25) encode the most prevalent detoxification 340	

enzymes in insects, and participate in many other important physiological processes. A total of 341	

106 genes and 19 pseudogenes predicted to encode CYP450s were manually annotated in the 342	

A. glabripennis genome. 137 genes and 6 pseudogenes were detected by matches to InterPro 343	

domains, the third highest number in our comparative genomic study, after the beetles T. 344	

castaneum and O. taurus. Examining the CYP450 sub-families showed that A. glabripennis had 345	

five times as many Group II matches (18 genes; including CYP4 and CYP6) than the average 346	

across the other insect species studied. CYP6 enzymes metabolize a wide range of toxic 347	

compounds and are known to clear odorants in insect antennae [47]. CYP4 enzymes are 348	

involved in cuticular hydrocarbon biosynthesis and have been implicated in insecticide 349	

resistance [48]. Supporting their roles in detoxification, 25 CYP450 genes were induced in the 350	

guts of A. glabripennis larvae feeding in sugar maple, including many genes in A. glabripennis-351	

specific clades (Additional file 1: Figure S10). Only two of the genes that were induced 352	

(CYP18A1, CYP314A1) occurred in orthologous pairs with T. castaneum genes. Therefore, 353	

while the many CYP450 ortholog pairs between T. castaneum and A. glabripennis presumably 354	

carry out functions conserved over millions of years of evolution, expansion of several CYP 355	

families and the evolution of A. glabripennis specific CYP clades relative to T. castaneum 356	

suggests that these genes have evolved and diversified in A. glabripennis as a mechanism to 357	

overcome host plant defenses. 358	

UDP-glycosyltransferases (UGTs) assist with the detoxification and elimination of 359	

xenobiotics (foreign substances such as those produced by parasites) and in the regulation of 360	



	 14.	

endobiotics (substances produced, e.g., in response to the presence of parasites). 65 putative 361	

UGTs, including 7 pseudogenes, were manually annotated in the A. glabripennis genome (Fig. 362	

6; Additional file 1: Figures S11, S12, S22 and Tables S21, S26; Additional file 2: Table S16). 363	

Only two taxa have so far been reported to harbor a greater number of UGT genes – Locusta 364	

migratoria (the migratory locust, family Acrididae; 68 UGTs) [49], and the aphid A. pisum (72 365	

UGTs; reported herein via matches to InterPro domains; 58 UGT genes were reported for A. 366	

pisum by Ahn et al. [50]). The expansion of UGTs in A. glabripennis may be related to its ability 367	

to feed on a broad range of healthy host plants, a feature shared with L. migratoria. 368	

Approximately 92% of A. glabripennis UGTs are arranged in a tandem manner and 50 of them 369	

were concentrated in just seven clusters. Most UGTs thus appear to have diversified by tandem 370	

gene duplication, resulting in increased substrate range of host secondary metabolites by 371	

altering the N-terminal substrate binding domain of the enzyme. The largest UGT family 372	

observed in A. glabripennis, UGT352, is unique to this species and consists of 21 genes. 14 373	

UGT352 genes were positioned in the same orientation in a cluster on one scaffold (Fig. 6). An 374	

A. glabripennis-specific expansion of 7 genes was found in the UGT321 gene family. These 375	

expansions may enable A. glabripennis to adapt to a wide range of host plant defenses. 376	

Consistent with this hypothesis, four UGTs were strongly upregulated in A. glabripennis larvae 377	

feeding in sugar maple, including two UGT321 genes, and one UGT352. Although only a portion 378	

of the potential detoxification genes harbored in the A. glabripennis genome were induced while 379	

feeding in sugar maple – just one of the many host plants of A. glabripennis – the existence of a 380	

diverse metabolic repertoire likely helps A. glabripennis feed on different host species that 381	

produce different defensive compounds. 382	

In addition, the A. glabripennis genome was found to contain more putative esterases than 383	

any of the other insect genomes studied (Additional file 1: Figure S20 and Tables S19, S24). 384	

This is due mainly to a large expansion of type-B carboxylesterases (COesterases; IPR002018), 385	

most of which are paralogs. COesterases are important for the metabolism of xenobiotics and 386	
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for degrading ester bonds linking lignin to hemicellulose in plant secondary cell walls. 107 387	

COesterases were identified in the A. glabripennis genome (Additional file 1: Figure S14), more 388	

than double the average in the other species studied. Most COesterases occur in large clusters; 389	

only 28 (25%) occur as singletons. Two large clades of COesterases, one containing 17 genes 390	

and the other 13 genes, were unique to A. glabripennis. A. glabripennis also had the most 391	

genes (8 total) matching the thioesterase domain (IPR001031). COesterases were among the 392	

most highly induced genes in A. glabripennis larvae feeding in sugar maple and most of the 393	

highly induced COesterases belonged to A. glabripennis-specific clades and formed tandem 394	

repeats in the genome, potentially signifying novel functions related to digestion of woody plant 395	

tissues, or detoxification of plant allelochemicals. 396	

Digestive proteinases may play key roles in scavenging nitrogen from plant cell wall proteins 397	

or midgut endosymbionts, and may help phytophagous insects cope with proteinase inhibitors 398	

produced by plants [51]. A. glabripennis-specific expansions of several proteinase OGs were 399	

observed in comparison to T. castaneum and D. ponderosae. The largest were OGs 400	

EOG8V724X and EOG8V19NQ, comprising tandem arrays of eight and seven trypsin genes, 401	

respectively. Both OGs contain genes predicted to encode secreted serine proteinases. Most 402	

proteinase genes were unique to each of the five beetle species studied, suggesting that their 403	

evolution occurred largely after speciation and may be correlated with exposure to different 404	

digestive enzyme inhibitors and with feeding on different diets. These gene families appear to 405	

be highly dynamic and may largely shape the digestive physiology of phytophagous insects. 406	

Sensory biology 407	

A. glabripennis adults use a complex set of chemical and visual cues for host plant and mate 408	

finding. We compared the members of four gene families involved in chemoperception (olfaction 409	

and gustation) and vision in A. glabripennis with those from T. castaneum and D. melanogaster. 410	

We manually annotated 52 odorant binding protein (OBP) genes in the A. glabripennis genome 411	

(Additional file 1: Figure S23). Most OBPs comprise a large expansion of the minus-C 412	
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subfamily, and the remaining genes were placed singly or in small radiations that exhibit the 413	

classic 6-cysteine motif. One OBP (AglaOBP51) was identified as a member of the plus-C 414	

group, the same as in T. castaneum and D. ponderosae [52], suggesting that the tendency 415	

toward minus-C OBPs originated at least with the beetle infraorder Cucujiformia (~190 Ma) [3]. 416	

A. glabripennis has 131 odorant receptor (OR) genes in addition to the highly conserved OR co-417	

receptor, Orco (Additional file 1: Figure S24). These include representatives of all seven sub-418	

families of beetle ORs except group 6, and follow the pattern of frequent paralogous radiations 419	

typical of insect chemoreceptors. Two new lineages of ORs were identified in A. glabripennis 420	

and placed as outgroups to OR groups 4, 5, and 6 in T. castaneum (Or106-115/126-132 and 421	

Or101-103). The function of beetle ORs remains mostly unknown, and receptors have only 422	

been characterized from Megacyllene caryae (hickory borer, family Cerambycidae) (McarOr3). 423	

AglaOr29 is notably sister to McarOr3, which is sensitive to 2-methylbutan-1-ol, a pheromone 424	

component of Megacyllene [53]. 425	

A. glabripennis has an extensive suite of 234 gustatory receptors (GRs), including three 426	

conserved candidate CO2 receptors (Gr1-3), 10 candidate sugar receptors (Gr4-13), and three 427	

candidate fructose receptors related to DmGr43a (Gr14-16). The remaining 127 GRs encode 428	

218 receptors through alternative splicing, and presumably belong to the general category of 429	

candidate bitter taste receptors, although some likely are also involved in contact pheromone 430	

perception [54] – a component of A. glabripennis mate finding behavior [55]. A. glabripennis has 431	

72 ionotropic receptors (IRs) including orthologs of the conserved co-receptors IR8a and 25a, 432	

and of IR21a, 40a, 41a, 68a, 76b, 93a, and 100a. The IR75 lineage consists of 8 genes 433	

compared with 6 in T. castaneum and 7 in D. melanogaster. These are all candidate ORs, while 434	

the candidate GRs, represented by the DmIr20a clade of 40 genes [56], consist of 55 genes, 435	

compared to 53 in T. castaneum, although these two beetles exhibit differential species-specific 436	

expansion of gene lineages within this large grouping. Like T. castaneum [15, 57], A. 437	

glabripennis has large OR and GR repertoires compared with D. melanogaster, and indeed 438	
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most other insects except ants, but their OBP and IR repertoires are more comparable with that 439	

of D. melanogaster and similar to many other insects (Additional file 1: Table S27). The optical 440	

sensitivity of A. glabripennis appears to be similar to that of T. castaneum [58]. A. glabripennis 441	

has a single long-wavelength-sensitive opsin and a single UV-sensitive opsin. A. glabripennis 442	

differs from T. castaneum, however, in having the Rh7 opsin, whose function is unknown, and in 443	

lacking the c-opsin found in most other insects and other arthropods, which is presumed to have 444	

a non-visual function [59]. 445	

Conclusions 446	

A. glabripennis possesses a remarkably robust enzymatic repertoire capable of digesting most 447	

of the polysaccharides it encounters while feeding on woody host plants (cellulose, xyloglucan, 448	

xylan and pectin). Furthermore, diverse suites of detoxification genes, and several classes of 449	

digestive proteinases provide A. glabripennis with the metabolic plasticity needed to overcome 450	

the challenges of feeding on several different host trees, each with a distinct profile of defensive 451	

compounds. Many of the paralogs in gene families encoding enzymes typically involved in plant 452	

cell wall degradation (PCWDEs) and detoxification occur in large clusters in the A. glabripennis 453	

genome and appear to have diversified by tandem gene duplication. Large expansions of genes 454	

encoding CYP450s, UGTs, COesterases (these three together are sometimes called the 455	

defensome; e.g., [60]) and GH1s in the A. glabripennis genome are particularly notable, as they 456	

are among the largest such repertoires of detoxification genes known in insects. Genes 457	

encoding PCWDEs are also uniquely expanded in number in the A. glabripennis genome. The 458	

A. glabripennis genome encodes genes from a remarkable 3 families of putative cellulases 459	

(GH5 subfamily 2, GH9 and GH45), and one of these, GH5 subfamily 2, evolved in such a way 460	

that it provides the beetle with an arsenal of enzymes possessing the ability to degrade the main 461	

polysaccharides of the cellulose and hemicellulose (xylan and xyloglucan) networks in both 462	

primary and secondary plant cell walls. A. glabripennis also has the ability to degrade lignin, 463	
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either through the activities of its gut microbial fauna and/or by way of enzymes encoded in its 464	

genome. Our results are notable in including not only an enumeration of genes potentially 465	

involved in plant cell wall degradation and detoxification (thus facilitating specialized phytophagy 466	

on woody plants and a wide host range), but also results from experimental assessments of 467	

gene expression and enzyme activiies. 468	

Acquisition of new genes (here, GH5, GH28 and GH45 family genes) via HGT from bacteria 469	

and fungi, followed by gene copy number amplification and functional divergence were 470	

fundamental to the addition, expansion and enhancement of the metabolic repertoire of A. 471	

glabripennis. Our results thus begin to establish both a genomic basis for the invasiveness and 472	

broad host plant range of A. glabripennis, and more generally, the apparent evolutionary 473	

success of beetles on plants. 474	

Methods (More information is available in Additional file 1, and supporting scripts are available 475	

at https://github.com/NAL-i5K/AGLA_GB_supp-scripts). 476	

Genome size and DNA and RNA for sequencing. The genome size of 5 male and 5 female 477	

adult A. glabripennis collected from the former Chicago, IL, USA infestation were estimated via 478	

flow cytometry. The A. glabripennis specimens sequenced for this project were obtained from a 479	

USDA-APHIS colony stocked with the descendants of beetles collected from current and former 480	

infestations in IL, NY, and MA, except when noted otherwise in the supplement (Additional file 1: 481	

Table S1). The A. glabripennis genome was sequenced from DNA that was extracted from a 482	

single late instar female larva (G Biosciences, Omniprep kit), whose sex was determined after 483	

sequencing (Additional file 1: Figure S3). 484	

Genome sequencing and assembly. An enhanced Illumina-ALLPATHS-LG [61] sequencing 485	

and assembly strategy was employed. We sequenced four libraries of nominal insert sizes 180 486	

bp, 500 bp, 3 kb and 8 kb at genome coverages of 59.7X, 45.8X, 58.7X and 20.5X respectively. 487	

Sequencing was performed on Illumina HiSeq2000s generating 100bp paired end reads. Reads 488	
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were assembled using ALLPATHS-LG (v35218) and further scaffolded and gap-filled using in-489	

house tools Atlas-Link (v.1.0) and Atlas gap-fill (v.2.2) (https://www.hgsc.bcm.edu/software/). 490	

Data for the A. glabripennis genome has been deposited in the GenBank/EMBL/DDBJ 491	

Bioproject database under the accession code PRJNA163973 (Additional file 1: Table S3). Raw 492	

genomic sequence data is deposited in the GenBank/EMBL/DDBJ sequence read archive under 493	

the accession codes of SRX326764, SRX326768, SRX326767, SRX326766, and SRX326765. 494	

The genome assembly has been deposited to GenBank under the accession 495	

GCA_000390285.1. RNA-seq datasets used in gene prediction are deposited to the 496	

GenBank/EMBL/DDBJ sequence read archive under the accession codes SRX873913 and 497	

SRX873912. 498	

Automated annotation. The A. glabripennis genome assembly was subjected to automatic 499	

gene annotation using a MAKER 2.0 [62] annotation pipeline tuned for arthropods. Both protein 500	

and RNA-seq evidence from extant arthropod gene sets were used to guide gene models. The 501	

genome assembly was first subjected to de novo repeat prediction and Core Eukaryotic Genes 502	

Mapping Approach (CEGMA) analysis [63] to generate gene models for initial training of the ab 503	

initio gene predictors. Three rounds of training of the Augustus [64] and SNAP [65] gene 504	

predictors within MAKER were used to bootstrap to a high quality training set. RNA-seq data 505	

from A. glabripennis adult males and females was used to identify exon-intron boundaries. 506	

Finally, the pipeline used a nine-way homology prediction with human, D. melanogaster and C. 507	

elegans, and InterPro Scan5 to allocate gene names. The automated gene set is available from 508	

the BCM-HGSC website (https://www.hgsc.bcm.edu/asian-long-horned-beetle-genome-project) 509	

and at the National Agricultural Library (https://i5k.nal.usda.gov). 510	

Community Curation. The A. glabripennis genome was curated to improve the structural and 511	

functional annotations of genes and gene families of interest using the Web Apollo manual 512	

curation tool [66] (Additional file 1: Table S4; Additional file 2: Tables S5, S6). Web Apollo is an 513	

interactive, web-based manual curation tool that visualizes user-generated annotation changes 514	
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in real time, allowing remote collaboration on annotations. The A. glabripennis genome 515	

coordinator (D. McKenna, University of Memphis) organized a group of experts to manually 516	

curate genes or gene families of interest in Web Apollo. Web Apollo 517	

(https://apollo.nal.usda.gov/anogla/jbrowse/) tracked all evidence used for the MAKER gene 518	

predictions, as well as an additional RNA-Seq dataset that was not used in the generation of the 519	

MAKER gene predictions. The manually curated models were inspected for quality, including 520	

overlapping models, internal stop codons within the CDS, gff3 formatting errors, and mixed 521	

transcript types within gene models. The quality-corrected models were then merged with the 522	

MAKER-predicted gene set to generate an official gene set (OGS), followed by post-processing 523	

to ensure curation information was transferred adequately. A full list of conditions for mRNA, 524	

gene, exon and CDS are listed in Additional file 1: Table S5. All functional information was 525	

included in the OGS. Information on the A. glabripennis genome project is collated at the i5k 526	

Workspace [67] (https://i5k.nal.usda.gov/Anoplophora_glabripennis), and the genome, transcript 527	

and protein sets can be searched via BLAST and browsed via the JBrowse genome browser 528	

[68] (https://apollo.nal.usda.gov/anogla/jbrowse). All manually curated genes and transcripts 529	

and their curation actions are provided in a supplemental table (Additional file 2: Table S6). 530	

Additional details on annotation methods are provided in the Supplementary materials. 531	

Assessing orthology and the quality of genome assembly and annotation. Orthology data 532	

from OrthoDB v8 [20] with a total of 87 arthropod species were analyzed to identify orthology 533	

and homology assignments of A. glabripennis genes with those of other beetles and 534	

representative species from six other insect orders. The gene sets of A. planipennis and O. 535	

taurus (unpublished data, manuscript in preparation; Fig. 2) were mapped to OrthoDB v8 536	

orthologous groups (OGs) to include them in the analysis. The selected species include several 537	

that feed on plants and were partitioned into three species sets - 5 Coleoptera, 5 538	

Lepidoptera/Diptera, and 5 outgroup insects. Arthropod OGs were queried with custom Perl 539	

scripts to identify OGs with genes from all three species sets (across 15 species), just two sets 540	
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(across 10 species), or restricted to a single set (across 5 species). To be considered shared, 541	

orthologous groups were required to contain genes from at least two species in each set. For 542	

those shared among all three sets (a total of 7,376 OGs), the numbers of single-copy and multi-543	

copy orthologs were summed across all OGs for each species. Lineage-restricted genes without 544	

orthologs were assessed for significant homology (e-value <1e-05) to other arthropod genes 545	

from OrthoDB or for significant homology (e-value <1e-05) to genes from their own genomes 546	

(self-only homology). The completeness of the A. glabripennis genome assembly and annotated 547	

Offical Gene Set (OGS) were assessed using BUSCOs [19]. We compared the results from A. 548	

glabripennis to those from 14 other insect genomes (Figure 2B; Additional file 1: Figure S1). We 549	

used the Arthropoda gene set, which consists of 2,675 single-copy genes that are present in at 550	

least 90% of Arthropoda. 551	

Identification of bacterial to eukaryote horizontal gene transfers. HGTs were identified as 552	

described in Wheeler et al. [69]. Briefly, we used BLASTN to compare genomic scaffolds 553	

against a bacterial database containing 1,097 complete bacterial genome sequences 554	

downloaded from the National Center for Biotechnology Information (NCBI). Regions with 555	

significant bacterial identity (E value<1e−5) were then compared to a second database 556	

containing representative animal genomes (see Wheeler et al. [69] for list of animal species) 557	

obtaining a corresponding “animal” BLASTN E value score. If the animal E value score was less 558	

than the bacterial E value score the sequence was excluded as a slowly evolving highly 559	

conserved gene. Candidates were then further annotated manually for flanking eukaryotic 560	

genes and junctions between eukaryotic and bacterial sequences in the libraries. For glycoside 561	

hydrolases, the same methods were used, but additionally, we simply BLASTed the genome using 562	

sequences of known, characterized PCWDEs found in phytophagous beetles [8-10] including Apriona 563	

japonica [7], a close relative of A. glabripennis. 564	

Differential expression analysis of A. glabripennis larvae feeding on sugar maple versus 565	

artificial diet. Five pairs of adult male and female A. glabripennis were allowed to maturation 566	
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feed on fresh twigs collected from Norway maples (Acer platanoides, family Aceraceae) for two 567	

weeks. After this period, the beetles were allowed to mate and oviposit into potted sugar maple 568	

trees (Acer saccharum) maintained in a USDA-approved quarantine greenhouse for two weeks. 569	

The trees were harvested approximately 60 days after the eggs hatched and four third-instar 570	

larvae were collected. Four third-instar larvae feeding on artificial diet [70] were also harvested. 571	

Larvae were surface sterilized, dissected, and their midguts were removed and frozen in liquid 572	

nitrogen. RNA was isolated, and ribosomal RNA was depleted from the sample using 573	

Ribominus Eukaryotic Kit for RNA-Seq (Life Technologies). The enriched mRNA was further 574	

polyA purified and multiplexed Illumina libraries were constructed using the TruSeq RNA 575	

Sample Prep kit (Illumina, San Diego, CA). Samples were pooled and sequenced on a single 576	

Illumina HiSeq lane at the University of Delaware Biotechnology Institute (Newark, DE) to 577	

generate approximately 13 million 101 nt paired end reads per sample. Forward reads were 578	

trimmed and quality filtered using ea-utils (https://code.google.com/p/ea-utils/) and high quality 579	

reads of at least 75 nt in length were mapped to the A. glabripennis reference genome 580	

assembly using Tophat [71]. Read counts that mapped to each locus (version v0.5.3 581	

annotations) were summed using HTSeq [72]; reads that spanned multiple features were 582	

summed using the union mode and reads that did not map uniquely to a single region in the 583	

genome were discarded. Differential expression analysis was performed using edgeR [73]. 584	

Features with less than 10 mapped reads were removed from the analysis, read counts were 585	

normalized by quantile normalization, and variances were estimated using tagwise dispersions. 586	

Statistical analysis was performed using Fisher’s exact tests; features were flagged as 587	

differentially expressed if they had a log fold change greater than 1.0 and an adjusted p-value of 588	

< 0.05. Experiment-wise false discovery rate (FDR) was estimated at 0.05. The raw Illumina 589	

reads used for the differential expression analysis have been deposited into NCBI’s Sequence 590	

Read Archive (SRA) and are associated with Bioproject PRJNA279780. The read counts used 591	
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to compute differential expression have been deposited in Gene Expression Omnibus (GEO) 592	

under the accession GSE68149. 593	

In vitro functional characterization of plant cell wall degrading enzymes. A. glabripennis 594	

larval samples were obtained from D. Lance (USDA-APHIS-PPQ). Larvae were chilled on ice 595	

and cut open; midguts from 1.5 month old, 4 month old and 8 month old larvae were collected 596	

and stored in an excess of RNA Later solution (Ambion) prior to shipping. RNA was 597	

subsequently isolated using the innuPREP RNA Mini Kit (Analytik Jena) according to the 598	

manufacturer’s protocol. Genomic DNA contamination was removed by DNAse treatment 599	

(TURBO DNAse, Ambion) for 30 min at 37 °C. Midgut RNA was further purified using the 600	

RNeasy MinElute Clean up Kit (Qiagen) following the manufacturer’s protocol and eluted in 20 601	

µl of RNA storage solution (Ambion). Integrity and quality of the RNA samples were determined 602	

using the RNA 6000 Nano LabChip kit (Agilent Technologies) on an Agilent 2100 Bioanalyzer 603	

(Agilent Technologies) according to the manufacturer’s instructions. 604	

Open reading frames encoding putative PCWDEs were amplified by PCR using gene-605	

specific primers. The forward primer was designed to introduce a 5’ Kozak sequence, and the 606	

reverse primer was designed to omit the stop codon. Equal amounts of total RNA prepared from 607	

midguts either of 1.5 month old or 4 month old or 8 month old larvae were pooled, and 1 µg total 608	

RNA from this pool was used to generate first strand cDNAs using the SMARTer RACE cDNA 609	

Amplification Kit (BD Clontech), following the manufacturer’s instructions. These cDNAs were 610	

subsequently used as templates for PCR amplifications. PCR products were cloned into the 611	

pIB/V5-His TOPO/TA (Invitrogen) vector, in frame with a V5-(His)6 epitope at the carboxyl-612	

terminus. Constructs were transfected into insect Sf9 cells, cells were grown to confluence, and 613	

expression of the recombinant proteins was validated as described previously [7].  Diffusion 614	

assays were performed using 1% agarose Petri dishes in McIlvaine buffer (pH 5.0) containing 615	

one of the following substrates: 0.1% carboxymethylcellulose (CMC, Sigma-Aldrich); 0.1% 616	

beechwood xylan (Sigma-Aldrich); 0.1% xyloglucan from tamarind seeds (Megazyme); 0.1% 617	
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pectin from citrus peels (Sigma-Aldrich); 0.1% demethylated polygalacturonic acid (Megazyme) 618	

Enzyme activity was detected using a 0.1% Congo Red solution as described previously [7]. 619	

TLC analysis of hydrolysis reaction products was also performed. The culture medium of 620	

transiently transfected cells was first dialyzed against distilled water at 4 °C for 48 h, using 621	

Slide-A-Lyzer Dialysis Cassettes with a 10 kDa cut off, before being desalted with Zeba Desalt 622	

Spin Columns 7 kDa cut off (both Thermo Scientific), according to the manufacturer´s 623	

instructions. Enzyme assays (20 ul) were set up using 14 µl of dialyzed and desalted crude 624	

enzyme extracts mixed with 4 µl of a 1% substrate in solution in a 20 mM McIlvaine buffer (pH 625	

5.0). For GH5-1 to -6, the following substrates were tested: carboxymethyl cellulose (CMC), 626	

avicel (suspension), beechwood xylan and xyloglucan. For GH28s, the following substrates 627	

were tested: demethylated polygalacturonic acid and pectin from citrus peels. The activity of 628	

GH28s on 10 µg/µl aqueous solution of tri- and di-galacturonic acid was also tested. Enzyme 629	

assays were incubated and plates developed as described previously [7].  630	

Amino acid alignments were carried out using MUSCLE version 3.7 on the Phylogeny.fr web 631	

platform (http://www.phylogeny.fr) [74] and were inspected and corrected manually when 632	

needed. Bayesian analyses were carried out in MrBayes 3.1.2 [75]. Two runs were conducted 633	

for the dataset showing agreement in topology and likelihood scores. To obtain support from a 634	

second independent method, maximum likelihood analyses were also performed using MEGA5 635	

[76]. The robustness of each analysis was tested using 1,000 bootstrap replicates. 636	

Comparative genomics of phytophagy and detoxification across Insecta. Gene families 637	

and sub-families associated with phytophagy (particularly xylophagy) and polyphagy or 638	

detoxification were identified by searching for matches to relevant InterPro domains in the 639	

complete gene sets from the genomes of 15 exemplar insect species. These included 5 beetles: 640	

A. glabripennis, D. ponderosae, T. castaneum, A. planipennis (unpublished), and O. taurus 641	

(unpublished); 5 basal insects: Zootermopsis nevadensis (dampwood termite, family 642	

Termopsidae), Pediculus humanus (human louse, family Pediculidae), A. pisum, Apis mellifera 643	
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(honey bee, family Apidae), and Nasonia vitripennis (jewel wasp, family Pteromalidae); 2 644	

lepidopterans: Plutella xylostella (diamondback moth, family Plutellidae), and Danaus plexippus 645	

(Monarch butterfly, family Nymphalidae); and 3 dipterans: Mayetiola destructor (Hessian fly, 646	

family Cecidomyiidae), D. melanogaster, and Anopheles gambiae (African malaria mosquito, 647	

family Culicidae). Protein domains were annotated with InterProScan5 [77] using the following 648	

domain libraries: PfamA-27.0, PrositeProfiles-20.97, SMART-6.2, SuperFamily-1.75, and 649	

PRINTS-42.0. The gene families examined included glycoside hydrolases, peptidases, 650	

esterases, cytochrome P450s, and UDP-glucosyltransferases. 651	

 The classifications based on InterPro domain counts were used only for those cases where 652	

the maximum gene count in a given species was greater than 5 (i.e., at least one species had a 653	

potential expansion of more than 5 genes). The orthology status of each of these identified 654	

genes was assessed using OrthoDB v8 [20] to determine if the gene was found as a single-copy 655	

ortholog, or with co-orthologs, or whether it showed homology to the domain but was not 656	

classified in any orthologous group. The results of the counts of each relevant domain type and 657	

the orthology status for the identified genes are given in Additional file 1: Tables S17-S26. 658	

Domains were selected for plotting from the complete list to avoid redundant domains (e.g. sub-659	

families rather than families, and just one of N/C-terminal domains). For each gene family, the 660	

bar charts were plotted with largest sub-family at the bottom and smallest at the top, showing 661	

the counts for each sub-family per species (Additional file 1: Figures S18-S22). The orthology 662	

status of genes in the sub-family bar charts (i.e., those plotted and where at least one species 663	

has >5 genes) show the totals in each species partitioned into single-copy and multi-copy 664	

orthologs, and homologs (Additional file 1: Tables S19-S23). 665	
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Fig. 1 1096	

A. glabripennis, the Asian longhorned beetle, is a high profile invasive pest species capable of 1097	

inflicting severe damage on its hosts, which include many important orchard, ornamental and 1098	

forest tree species. a Life cycle (adapted from Michael Bohne, used with permission; image of 1099	

adult female courtesy of Barbara Strnadova, used with permission). b Wood dissected to 1100	

expose feeding A. glabripennis larva (image courtesy of Kelli Hoover, used with permission). c, 1101	

d Adult A. glabripennis (images courtesy of Damon Crook, used with permission). Early stage 1102	

larvae are specialized wood-borers, feeding in galleries under the bark of host trees (in the 1103	

subcortical tissue and phloem). Larger, later stage larvae tunnel deep into the heartwood 1104	

(mature xylem) of their hosts, where they continue feeding and complete development [4]. 1105	

Adults are comparatively short-lived external feeders, consuming small amounts of tissue from 1106	

host leaves and twigs. A. glabripennis is broadly polyphagous on woody angiosperms. It is  1107	

native to eastern Asia, but has recently become established in several countries in North 1108	

America, Europe, and beyond, via solid wood packing material. A. glabripennis is a globally 1109	

significant pest, whose economic impact in the U.S. alone, if uncontrolled, has been 1110	

conservatively estimated at $8891 billion [5]. It is capable of attacking both healthy and 1111	

susceptible trees [78] and is broadly polyphagous, feeding on at least 100 species of woody 1112	

angiosperms worldwide [4, 79, 80]. 	1113	

																																																								
1 Adjusted for inflation May 2016. 
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Fig. 2 1120	

Phylogenetic relationships and estimates of completeness among the 15 insect genomes 1121	

studied. a Maximum likelihood (ML) phylogenetic tree based on amino acid sequences from 523 1122	

orthologs. All nodes have 100% ML bootstrap support. The tree was rooted with Zootermopsis 1123	

nevadensis. Asterisks indicate genomes that were sequenced via i5k and are analyzed herein 1124	

for the first time. Estimated divergence times are shown along branches subtending the crown 1125	

group nodes they refer to, and were obtained from [3] for Coleoptera, and [81] for all others. b 1126	

The completeness of both genome assemblies and official gene sets (OGSs) of each of the 1127	

insects were assessed using 2,675 arthropod benchmarking universal single-copy orthologs 1128	

(BUSCOs). For each species, the bottom bar in the histogram shows the OGS-based results, 1129	

whereas the top bar shows the genome-based results. Images courtesy of: Nicolas Gompel 1130	

(DMELA), Scott Bauer/USDA-ARS (MDEST), Chris Lewis (PXYLO), Didier Decouens (DPLEX), 1131	

Barbara Strnadova (AGLAB), Klaus Bolte (DPOND), Kohichiro Yoshida (TCAST), Rafal Celadyn 1132	

(OTAUR), PA Dept. of CNR (APLAN), Elizabeth Cash (NVITR), Gary McClellan (AMELL), John 1133	

& Kendra Abbott/Abbott Nature Photography (PHUMA), Sandy Rae (APISU), Don Loarie 1134	

(ZNEVA). 1135	

 1136	

a        b 
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Fig. 3 1137	

Orthology and homology assignments of A. glabripennis genes with those of 14 other insect 1138	

species. A conserved core of about 5,000 orthologs per species (5,029 A. glabripennis genes) is 1139	

maintained in orthologous groups with gene members from all 15 species, about half with a 1140	

single gene (dark purple) and half with multiple copies (light purple). A variable fraction of genes 1141	

is less well maintained but still widespread (green) with orthologs in at least two species from 1142	

each of the three sets of insect species. Lineage-restricted genes include those with orthologs 1143	

only within each set (pink), with recognizable homology to other arthropod genes (white) or their 1144	

own genes (cyan), or without any significant homology (gray). The numbers of orthologous 1145	

groups (OGs) are shown with area-proportional boxes for the set intersections and the lineage-1146	

restricted orthologs. See Methods for orthology classification details. 1147	

 1148	
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Fig. 4 1149	

Sub-family sizes for gycoside hydrolases found in the genome sequences of 15 insect species, 1150	
including A. glabripennis. Species with the maximum gene count for each are indicated with a 1151	
white asterisk. Among the examined species, A. glabripennis showed the most genes with 1152	
matches to GH domains, the majority of which were found as multi-copy orthologs. This 1153	
elevated gene count was mainly due to GH Family 1 (IPR001360), members of which exhibit 1154	
beta-glucosidase, beta-galactosidase, 6-phospho-beta-galactosidase, 6-phospho-beta-1155	
glucosidase, lactase-phlorizin hydrolase, beta-mannosidase, and myrosinase activities. 1156	
Uniquely among the examined species, 6 A. glabripennis genes matched GH Family 5 1157	
(IPR001547), also known as cellulase family A, whose members exhibit endoglucanase, beta-1158	
mannanase, exo-1,3-glucanase, endo-1,6-glucanase, xylanase, and endoglycoceramidase 1159	
activities. A. glabripennis also had 2 matches to the GH Family 45 (IPR000334, endoglucanase 1160	
activity) also known as cellulase family K, which was also found in D. ponderosae (9 copies). 1161	
Members of GH Family 28 (IPR000743) are pectinases that exhibit polygalacturonase and 1162	
rhamnogalacturonase activities, and had matches to 16 genes in A. glabripennis (18 were 1163	
identified by manual annotation; 19 were reported in [8]), 16 in D. ponderosae and 7 in A. 1164	
planipennis (50 were manually annotated). 1165	
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	 43.	

Fig. 5 1167	

Heatmap showing expression levels from A. glabripennis gycoside hydrolase genes with 1168	

putative involvement in plant cell wall degradation. Logfold changes in expression levels in 1169	

genes collected from A. glabripennis larvae feeding in the wood of living sugar maple trees are 1170	

shown versus those from larvae feeding on a nutrient rich artificial diet. While the expression 1171	

levels of GH genes were variable, several were significantly upregulated in larvae feeding in the 1172	

wood of living sugar maple. 1173	
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	 44.	

Fig. 6 1175	

Phylogenetic tree showing A. glabripennis (color) and T. castaneum (black) UDP-1176	

glycosyltransferases (UGTs), reconstructed from amino acid (aa) sequences using ML inference 1177	

(MLBS values <70 not shown). Each gene belonging to UGT352, UGT321, and UGT328 1178	

consists of 4 exons, with the long first exon (ca. 810 aa) followed by three short exons. Each 1179	

member of UGT323, UGT324, and UGT325 is composed of 4 exons with the short first exon 1180	

(ca. 200 aa) and the long second exon (ca. 800 aa) followed by two short exons. UGT312 and 1181	

UGT353 (AglaUGT_63 and _64) consistently contain genes with 5 exons. Scaffold 72 is shown 1182	

to illustrate the tandem arrangement typical of A. glabripennis UGTs. Photo of A. glabripennis 1183	

courtesy of Barbara Strnadova, used with permission. 1184	
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