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INTRODUCTION

The structural information provided by the atomic coordinates of a

protein tells only part of the story of protein function. Much of the

remainder is told by the trajectory of motion. Motions can be classi-

fied according to the size of the mobile units, which may be frag-

ments, domains, or subunits, and according to packing as hinge, shear,

or other. Hinge bending motions are the largest single class of motions,

comprising 45% of the motions in a representative set.1,2 This class is

further subdivided into domain hinge motions (31% of the total)1 and

fragment hinge motions (13%). A logical first step towards the goal of

motion prediction for the case of domain hinge bending motions is to

predict the hinge location. In this work, we compare several existing

algorithms, present new ones, and combine all of these into HingeMas-

ter, a composite predictor.

The problem of hinge detection is easiest when two or more sets of

atomic coordinates are available for a given protein in different con-

formations. In that case, it is possible to visually inspect the pairs of

structures (as we have done in this work) and manually annotate the

hinge location. It is also possible to automate this using FlexProt or

(to some extent) other algorithms.3 Hinge detection based on two

structures is thus largely a solved problem. A much more challenging

problem arises when only one structure is known. In early work on

this problem, Janin and Wodak4 developed a domain interface area
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ABSTRACT

Protein motion is often the link between struc-

ture and function and a substantial fraction of

proteins move through a domain hinge bending

mechanism. Predicting the location of the hinge

from a single structure is thus a logical first

step towards predicting motion. Here, we

describe ways to predict the hinge location by

grouping residues with correlated normal-mode

motions. We benchmarked our normal-mode

based predictor against a gold standard set of

carefully annotated hinge locations taken from

the Database of Macromolecular Motions. We

then compared it with three existing structure-

based hinge predictors (TLSMD, StoneHinge,

and FlexOracle), plus HingeSeq, a sequence-

based hinge predictor. Each of these methods

predicts hinges using very different sources of

information—normal modes, experimental ther-

mal factors, bond constraint networks, ener-

getics, and sequence, respectively. Thus it is logi-

cal that using these algorithms together would

improve predictions. We integrated all the meth-

ods into a combined predictor using a weighted

voting scheme. Finally, we encapsulated all our

results in a web tool which can be used to run

all the predictors on submitted proteins and vis-

ualize the results.
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calculation method. The more recent FIRST algorithm5–9

identifies rigid substructures based on graph theoretic

calculations. FRODA uses these rigid units to simplify the

process of generating alternate structures which have been

shown to be consistent with NMR data for certain pro-

teins.10,11 The Gaussian Network Model (GNM)12 is an

approximate method for obtaining normal mode displace-

ments and consequent motional correlations of backbone

a-carbon atoms. Kundu et al. used the sign of the GNM first

normal mode displacement, with some postprocessing, to

assign residues to structural domains.13

A yet more challenging problem arises when only

sequence features (but no structural coordinates) are

known. In this article, we evaluate one predictor that

uses only sequence information. Relatively little work has

been reported on this largely unsolved problem,14,15 but

it is in some ways related to the more extensively studied

problem of detection of evolutionary domain boundaries

(which may or may not be flexible).15–18

In this work, we first introduce hNM, a family of

mostly novel hinge predictors based on normal modes.

The first member of this family, which we call hNMa for

simplicity, posits that the minima of the normalized

squared normal mode fluctuations should coincide with

hinges. This in itself is not novel but we show that for

the case of domain hinge bending, the first (rather than

any higher) normal mode is most informative, addressing

a point of some debate in the literature. A second, novel,

method designated hNMb detects the most rigid, contin-

uous structural domain through segmentation of normal

mode motional correlation matrices. Subsidiary predic-

tors hNMc and hNMd use similar information to find

additional hinges. To benchmark the method and com-

pare and integrate it with others, we use the Hinge Atlas

Gold (HAG), a set of proteins with carefully annotated

hinge locations.

We then turn our attention to existing methods, for

purposes of comparison and integration. We review the

following hinge predictors:

1. StoneHinge (Keating, et al. StoneHinge: A Hinge Pre-

diction Algorithm Using Rigidity Theory. Manuscript

in preparation, 2006) recognizes hinges as flexible

regions of the protein main chain intervening between

the two largest rigid domains (of at least 20 residues

each), as defined by ProFlex constraint-counting anal-

ysis of the protein’s covalent and noncovalent bond

network. Importantly, StoneHinge has some ability to

detect proteins that do not move by hinge bending,

but rather fall into some other classification.1 In the

latter case, hinge prediction results from other predic-

tors are likely to be inapplicable.

2. Translation Libration Screw Motion Determination

(TLSMD)19 divides the protein into segments whose

rigid body motions best account for the observed

distribution of temperature factors in a crystal structure.

3. The FO (FlexOracle20) family of hinge predictors gen-

erates protein fragments based on all possible loca-

tions of one or two cuts on the backbone. It is based

on the idea that structural domains fold independ-

ently, therefore when the cuts coincide with the hinge

location, the free energy of folding will be minimal

for the corresponding fragment pair.

4. HingeSeq15 is a hinge predictor based not on structure

but rather on sequence features.

These methods are complementary to each other and

to hNM family since they use very different information,

namely bond network topology, experimental thermal

factors, estimated domain free energy of folding, and

sequence. We run all of the predictors against the HAG,

then use various qualitative and quantitative measures to

benchmark and compare the performance of each

method. Lastly, we combine all of the methods using a

voting scheme to create a new predictor called Hinge-

Master.

THE hNM FAMILY OF
NORMAL MODE BASED
HINGE PREDICTORS

hNMa: Which normal mode eigenvector
is most important for hinge prediction?

We begin our development with the hNM family of

hinge predictors. The name suggests its relationship to

HingeMaster (the integrated hinge predictor) and its reli-

ance on Normal Mode information. As mentioned, this

family has five members, designated hNMa to hNMe, of

which hNMb through hNMe are novel. The output of

hNMa is simply the normalized squared fluctuations due

to the first normal mode, with the idea that the minima

of this quantity coincide with the hinge location. This in

itself is not novel21 but the choice of first versus second

or higher modes is the subject of much debate in the

community,13,21,22 and it is this debate which we

address first.

Normal mode expansions provide the form of dis-

placements of a structure at each of a progressive series

of resonant frequencies, or excitation frequencies to

which an elastic structure responds strongly. Various

studies underscore the importance of low-order modes in

describing protein motion, but opinions vary as to which

of these should be used for hinge prediction. Alexandrov

et al.23 and Krebs et al.24 compared the successive nor-

mal modes of proteins with the displacements observed

from interpolated (‘‘morphed’’) structural pairs of pro-

teins, and found that the correlation was highest for the

lowest order mode, and decreased progressively for

higher modes. Kundu et al.13 assigned residues of pro-

tein to one of two clusters depending on the sign of the
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lowest-order nontrivial normal mode eigenvector. These

domain assignments are then adjusted by a series of

physicochemically motivated postprocessing steps. Yang

and Bahar showed that catalytic sites tend to coincide

with regions of minimal displacement of the first and

second nontrivial mode.21 Here, we show that for the

case of domain hinge bending, the lowest-order nontri-

vial mode should be used for hinge prediction.

To do so, we will make use of the concept of a nodal

surface. To introduce this consider the example of a one

dimensional guitar string driven at its second harmonic

frequency. The string will have a nodal point in the mid-

dle which remains stationary. A drum head (effectively

two dimensional) similarly will have nodal lines, depend-

ing on which mode is excited. A three dimensional object

such as a tuning fork or a protein will have a surface

which describes the locus of points that remain station-

ary when the object vibrates at one of its normal fre-

quencies. The displacements of points on opposite sides

of this nodal surface have opposite sign.13 This surface is

in some sense a hinge, about which the motion occurs.

One might come away from prior work,12,23,25,26

with the following two ideas:

1. The nodal surface of the lowest order normal mode

eigenvector should coincide with the hinge location.

2. The nodal surfaces of the second, third, and higher

normal mode eigenvectors should also coincide with

the hinge, but to a lesser degree.

To test these, we extracted the mobility score, Mik for

each residue i in the kth mode, for k 5 1–7.21 This

quantity is the square fluctuation of residue i in mode k,

normalized such that the most mobile residue has mobil-

ity Mik 5 1 for mode k. We then generated one ROC

curve for each mode k. This is based on taking all resi-

dues with normal mode displacement lower than a cer-

tain threshold to be test positives and all others to be test

negatives. The ROC curves are generated by moving the

threshold and calculating sensitivity and specificity for

each possible threshold. We found that the first idea

above was correct; regions of low first normal mode dis-

placement are likely to coincide with hinge location (see

Fig. 1). The second and third normal mode displace-

ments were not correlated with hinge location, as

reflected by areas under the curve near 0.5. Modes higher

than three were also found to have very little correlation

with hinges (data not shown). Therefore the second idea

is incorrect. From this we concluded that if normal

mode displacements alone are used for hinge prediction

then it is the first rather than higher modes that alone

should be used. This is not to say that the higher modes

are useless; in the next section we will show that the cor-

relation matrix is generated by summing the correlations

due to all modes, and this matrix can be used effectively

for hinge prediction.

Motion correlation based methods
(hNMb, hNMc, hNMd)

We now move on to describe applications of normal

modes to hinge finding. To do this we must first calcu-

late the normal mode motional correlations between a-
carbon atoms in a protein. This is obtained by comput-

ing an expectation value in the Boltzmann ensemble. The

result is12,27:

g

3kBT
DRi � DRj

� � ¼ ðC�1Þij

¼
XN�1

k¼1

x�1
k uk½ �i uk½ �j ¼ UX�1UT ð1Þ

Where G is the Kirchoff, or connectivity matrix, and X is

the diagonal matrix of eigenvalues xk of G. The elements

of G are simple to obtain approximately using the GNM

method.12 [uk]i is the displacement of the a-carbon of

residue i due to normal mode k. DRi is the net displacement

of the a-carbon of residue i from its equilibrium position

due to normal mode motions. g is the effective stiffness

used by Tirion et al.28,29 Cross-correlations are normalized

with respect to the auto-correlations as follows12:

Figure 1
Lower values of the first normal mode displacement (solid line) correspond to

hinges, as shown by an area under the curve significantly greater than 0.5. The

same is not true of the second (dashed line) and third (dotted line) normal

modes, which have almost no predictive power. The slope at the origin is not

very steep, reflecting the fact that wide regions of proteins often had small or

zero displacement, leading to ambiguous predictions. Regions of high

displacement, however, were rather confidently excluded from containing hinges.

HingeMaster
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Cði; jÞ ¼ DRi � DRj

� �

DRi � DRih i DRi � DRih i½ �1=2
ð2Þ

It is possible to inspect or analyze the cross-correlation

matrix C(i,j) by various methods30 and determine the

boundaries of domains. Figure 2(a) illustrates this—the

continuous domain is easily identified visually in this

case. The idea is that the motion of all the residues in a

domain should on average be correlated with that of all

other residues in the same domain. We therefore seek

submatrices of C(I,j) with high average values. Further,

these submatrices should be maximal in size so as to

favor finding the largest domains.

As a first step we compute the Average Correlation ma-

trix as follows:

A ðk; lÞ ¼
1

ðl�kÞ2
P

k< i�l; k<j�l

Cði; jÞ if k < l

0 if k ¼ l

Aðl; kÞ if k > l

8><
>:

9>=
>;

ð3Þ

As mentioned we seek large domains. To this end, we

therefore generate a matrix W(k,l) by weighting A(k,l) to

favor pairs k,l that are maximally distant from each other,

and are likely the endpoints of a structural domain:

W ðk; lÞ ¼ � l � kj j � Aðk; lÞ: ð4Þ

Lastly, we treat W(k,l) as a two-dimensional discrete

function of k,l and identify its minima using the algo-

rithm described for FlexOracle.20 The W(k,l) matrix,

again for Glutamine Binding Protein, with its global

minimum highlighted, is shown in Figure 2(b). hNMb

(Continuous Domain Boundary Identifier), hNMc and

hNMd (Excluded Region Identifier) all use this list of

minima, but treat it differently. hNMb ranks the minima

by the value of W(k,l) at the minimum. The particular

values of the indices k,l, where k < l at the location of the

global minimum are taken as the residue numbers of a

pair of hinge points. If k(l) is within five residues of the

N(C) terminus, then k(l) is dropped and the other index

is reported as the sole hinge point. The last modification

is that for the hinge point at k(l) the hinge is reported as

consisting of the two residues k 2 1 and k(l 2 1 and l).

hNMc goes through the same procedure, except it

ignores the lowest minimum (already reported by

hNMb) and processes all remaining minima as above. If

any hinge point is within five residues of a hinge point

corresponding to a lower minimum, the hinge point cor-

responding to the higher minimum is discarded.

hNMd (Excluded Region Identifier) works somewhat

differently. It is based on the idea that we may not be

able to precisely identify the flexible regions of protein,

but we can perhaps still identify parts of the protein

which are rigid, and surmise that the hinge may lie any-

where except in these rigid regions. For a minimum of W

located at residues k,l, it considers residues k 1 1 to l 2 2

to be part of a structural domain and excludes them

from consideration as a hinge. The process is repeated

with the remaining minima k,l of W (k,l). Any residues

that were not excluded after all minima have been con-

sidered in this way are reported as potential hinges.

Lastly, hNMe (Holm and Sander-like hinge predictor)

partitions the matrix differently from NMB with similar

goals. The correlation matrix [Eq. (2)] is partitioned by

separating the residues into two domains much as Holm

and Sander30 did for the contact matrix. A minor adjust-

ment is needed which is explained in the Supplementary

Methods section. This results in a reasonably good pre-

dictor (Table I) which has the added benefit of assigning

each residue to one of two domains, and also has no

intrinsic limitation with respect to number of hinge

points. We did not use this method in the current work,

however, since we found that the Continuous Domain

Boundary Identifier (hNMb) described above yielded bet-

ter results when measured by the associated P-values.

INTEGRATION OF HINGEMASTER

Gold standard

As we mentioned, in order to benchmark (and later

combine) hNM and the other prediction algorithms we

need a gold standard. In prior work, we found that hinge

annotations reported in the literature are obtained by a

wide variety of means, including NMR, proteolysis, sec-

ondary structure annotation, and normal modes.20

Rather than attempt to treat such disparate annotations

on an equal footing, in that work we compiled a set of

proteins which had all been crystallized in two different

conformations and exhibited hinge bending motion. This

provides direct evidence of the structural conservation of

domains through the course of motion. The hinges were

then identified based on determining which residue back-

bone degrees of freedom needed to be free such that the

observed conformational change could take place without

large steric clashes.15

Many of the HAG proteins were collected from the

Hinge Atlas, while others, such as Adenylate Kinase, Bio-

tin Carboxylase, Lactoferrin, and Calmodulin, are classic

hinge bending proteins widely used as test cases in the

community and were added where absent to make the

dataset represent proteins of broad interest as much as

possible. The use of protein motions studied by third

parties confirms that the annotated hinge points reflect

biologically or at least thermodynamically relevant

dynamics. We delve into this in greater depth for two

proteins in this paper, and several more in the supple-

mentary discussion. We will show that in some cases, we
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Figure 2
Glutamine Binding Protein (open), Morph ID: f205132-23662 PDB ID: 1GGG, HAG hinges (residues 85–86,176–177). Above, (A) and (B) illustrate the procedure for

generating hNMb and hNMd predictions. First, the a-carbon correlation matrix (plotted in a.) is obtained using GNM. In this case, residues ranging from 85 to 180 have

highly correlated motion (dashed turquoise box). To a somewhat lesser degree, residues 1–80 are also correlated (dotted turquoise box). A second matrix is obtained the

elements i,j of which contain the average correlation for a submatrix of the correlation matrix spanning residues i to j. This is then weighted by multiplying each element

by 2|i 2 j|. The resulting matrix is plotted in (b). The minima of this matrix correspond to the boundaries of structural domains which are continuous in sequence. The

most significant of these (in absolute value) is i,j 5 84,180, or equivalently 180,84 (dashed turquoise circles). A secondary minimum also exists at i,j 5 1,80. hNMb

therefore reports residues 84,85,180,181 as the predicted hinge location. hNMd works by excluding residues in continuous domains and reporting the remaining ones as

possible hinges. Therefore, hNMd reports residues 85–88 and 181–217 as hinges. In (C) we show the two-cut FlexOracle (FoldX) plot. The minimum at 83,179 is visible

(dashed turquoise circles). In (D) we show the protein colored by HingeMaster score. In (E) we show the output of the FO1, hNMa, HingeSeq, and HingeMaster

predictors (dotted black, dotted magenta, dash-dotted cyan, and solid red traces, respectively) and the HAG hinge locations (green X’s).

HingeMaster
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predict a hinge where none is annotated in the HAG, but

for which some evidence exists in the literature. In these

cases that HAG annotation was not modified, since the

point of the HAG is to be objective rather than compre-

hensive. These cases demonstrate that the predictors can

detect previously unknown motion.

StoneHinge

We earlier introduced the novel hNM family of predic-

tors, and now move on to describe the existing predic-

tors. The first of these is StoneHinge, which predicts

hinges using the FIRST algorithm6 as implemented in

the freely available ProFlex software. ProFlex is designed

to analyze flexibility in proteins and uses a 3D constraint

counting algorithm based on rigidity and graph theory.

This approach ultimately derives from the structural en-

gineering work of James Clerk Maxwell,31 designed to

assess whether the trusswork of a bridge would be

adequate to ensure stability. The same concepts have

been shown to be mathematically robust for analyzing

the 3-dimensional covalent and noncovalent bond net-

works in proteins.32 The FIRST algorithm6,33 thus

counts local degrees of bond-rotational freedom. This

divides the protein into two types of regions: those that

are constrained and therefore rigid, and those that are

underconstrained and therefore free to rotate. A rigid

region consists of a group of atoms that do not move rel-

ative to each other due to the constraints of the bond

network. However, two rigid regions may move relative

to each other, like two stones connected by a flexible

tether.

A key part of this analysis involves representing the

essential noncovalent interactions (hydrogen bonds, salt

bridges, and hydrophobic interactions) that cross-

bridge the protein structure.8 These interactions vary

in energy and can be separated by invoking an energy

threshold. All interactions that are lower in energy

(more favorable) than this threshold are included in

the analysis, while those that are higher in energy (less

favorable) than the threshold are ignored. To obtain

flexibility analysis results reflecting ‘‘native-like’’

motion, this threshold is varied from protein to pro-

tein. We describe the process of selecting the correct

threshold below.

StoneHinge builds on the FIRST algorithm and uses

it to predict hinge motion. FIRST iteratively varies the

threshold and examines the resulting bond-constraint

network to find the boundaries of the rigid regions.

The size, location, and number of the rigid regions will

vary according to the threshold. StoneHinge selects the

value of the threshold that results in a second-largest

rigid region of maximal size. It then finds the flexible

region or regions connecting the two largest rigid

regions. These flexible regions are then reported as

hinges.

StoneHinge typically requires that both rigid domains

contain at least 20 residues. If two rigid domains of this

size can not be found, then StoneHinge reports that any

detected flexible residues are unlikely to contribute to a

hinge bending motion, as domains of this size typically

result from flexible loops or similarly small motions.

However, this restriction was ignored for purposes of

generating HingeMaster predictions.

Before the above analysis is carried out, StoneHinge

performs some preprocessing steps as follows. It first

removes all heteroatoms from the Protein Data Bank for-

matted structure files. These include inhibitors, ligands,

and cofactors, as they may stabilize the protein in the

ligand-bound conformation and cause the hinge region

to no longer appear flexible. Additionally, it adds hydro-

gen atoms to the structure using GROMACS,34,35 as

they are required to calculate hydrogen bond energies,

which are dependent on angular geometry as well as dis-

tance. Lastly, it removes all water molecules from input

crystal structures. While ProFlex works best with only in-

ternal water molecules included, which can potentially be

important for stabilizing protein structure, the effects of

these waters are typically minimal.36 As little difference

was found in the hinge predictions when using vs. omit-

ting entrained water molecules, (Keating, K., et al.,

StoneHinge: A Hinge Prediction Algorithm Using Rigid-

ity Theory. Manuscript in preparation, 2006) these were

not included for this analysis. Further explanation and

examination of the StoneHinge algorithm may be found

in Keating et al. (StoneHinge: A Hinge Prediction Algo-

rithm Using Rigidity Theory. Manuscript in preparation,

2006).

Table I
Performance of the Predictors Against the Hinge Atlas Gold Annotation

c
Test

positive
True

positive sensitivity specificity P-value

StoneHinge 1204 42 0.28 0.91 2.7E-11
HingeSeq 771 13 0.09 0.94 0.11
TLSMD 455 30 0.20 0.97 4.8E-15
hNMa 1279 37 0.24 0.91 8.7E-08
hNMb 126 31 0.20 0.99 3.2E-33
hNMc 517 26 0.17 0.96 1.7E-10
hNMd 1545 49 0.32 0.89 1.1E-11
hNMe 235 35 0.23 0.99 2.0e-29
FO1 563 8 0.05 0.96 0.32
FO1M 292 14 0.09 0.98 6.6E-06
FO 272 62 0.41 0.98 9.2E-66

Test positives are predicted hinge locations. hNM1 and FO1 give continuous

(rather than discrete) output, normalized to range from 0 to 1 for each protein.

Therefore for hNM1 and FO1 we took values below .02 and 0.1, respectively, as

test positives. There were a total of 13,259 residues in the HAG, of which

152(13,107) were Gold Standard Positives (Negatives). Therefore for the example

of StoneHinge, sensitivity was calculated as 42/152 5 0.28 and specificity was

(13259 2 1204)/13,107 5 0.91. For the same example, P-value was computed as

the probability of finding 42 or more true positive residues in a set of 1204 resi-

dues selected randomly and without replacement from a set of 13,259, using the

cumulative hypergeometric distribution.
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TLSMD

The second existing method was recently introduced

(TLSMD version 0.8.1 was used here) to identify seg-

ments of a protein that exhibit concerted vibrational

motion.37 It is based on analysis of the spatial distribu-

tion of atomic displacement parameters within a single,

conventionally-refined protein crystal structure. Each

group so identified is modeled by assigning to it a set of

20 TLS (Translation/Libration/Screw) parameters that

describe its net vibrational displacement.38 The method

is capable of identifying both large and small vibratory

groups, and is largely independent of the resolution of

the X-ray data used to refine the crystal structure. The

validity of TLSMD analysis in the context of crystallo-

graphic refinement can easily be judged by tracking the

standard crystallographic residuals R and Rfree resulting

from refinement of TLSMD-generated models against the

original diffraction data. In many cases multigroup TLS

models are strikingly successful at predicting the observed

diffraction data, and out-perform conventional crystallo-

graphic models during refinement.37,39 It is logical to

conclude that TLSMD correctly identifies actual vibra-

tional modes of the protein within the crystal. We are

interested to test the extent to which these same vibra-

tional modes are also present in solution, and the extent

to which the boundaries between vibratory groups identi-

fied by TLSMD correspond to specific hinge points iden-

tified by other experimental methods.

TLSMD partitions the protein chain into N segments. It

currently has no automated mechanism for distinguishing

segment boundaries that might correspond to inter-do-

main hinges from segments boundaries that might, for

example, define the endpoints of a flexible loop. To the

extent that it assigns an order of importance to these

boundaries, it does so based on their relative contribution

to the observed distribution of atomic displacements in

the crystal structure. Thus TLSMD may identify the boun-

daries of highly flexible, albeit small, regions before it

identifies those of large domains whose vibrational ampli-

tude is highly restricted by the crystal lattice. Therefore

each segment boundary, or breakpoint, may possibly cor-

respond to a hinge. But we faced a difficulty in deciding

how many TLSMD breakpoints to compare against the

hinge points listed in HAG. We have chosen to report all

segment boundaries found for N 5 2,3,4,5. This means

that the hinges resulting from assuming 2,3,4, and 5

domains exist are all reported on an equal footing. We

will delve into the consequences of this in the discussion.

FlexOracle (FO1, FO1M, FO)

The last of the existing algorithms to be discussed, Flex-

Oracle, is based on the definition of structural domains as

independently stable subunits of proteins. This means that

cleaving the protein at the hinge site between domains

should result in fragments that maintain their overall

structure,40 because those fragments should have a lower

free energy of folding than fragments generated by cleav-

ing within domains. The algorithm therefore works by

estimating the free energy of folding for all possible pairs

of fragments generated by cutting at two points on the

protein chain, and looking for minima of this quantity.20

FlexOracle has powerful discriminating ability. Sepa-

rate work describes three variants of FlexOracle.20 These

include the single-cut FlexOracle predictor with the

FoldX force field, which we here call FO1, a second pre-

dictor which detects the local minima of the same, which

we call FO1M, and the two-cut FlexOracle predictor,

which here we simply call FO. FO is by far the most

accurate of these as we will show.

Because it cuts the backbone at two points, however, FO

is limited to proteins with single- or double-stranded

hinges. Also, the code neglects bound metals. Since these

are highly coordinated, we will argue that accuracy may be

limited when metal binding contributes significantly to the

stability and motion characteristics of the protein.

Definition of HingeMaster

As pointed out previously, the described algorithms use

substantially different information to make hinge predic-

tions. Consequently they have different strengths and yield

very different results. StoneHinge is good at finding the

general region of the hinge, but often overestimates the

size of the hinge region. hNMd faces similar limitations.

FO and hNMb are very precise but are limited to single

or double-stranded hinges. TLSMD, on the other hand,

makes a small number of predictions, well spaced apart,

one or more of which often lie exactly on or very close to

domain hinges, and the rest of which are incorrect or lie

on points of non-domain hinge flexibility.

Combining various predictors by consensus41 or other

means is not unprecedented. We did this by creating

HingeMaster, the output of which is a weighted vote of

the individual predictors:

xHingeMaster ðiÞ ¼
X
8c2C

kcxc ðiÞ ð5Þ

where

C ¼ fStoneHinge; FO1; FO1M ; FO; HingeSeq; TLSMD;

hNMa; hNMb; hNMc; hNMd; 1g
xcðiÞ ¼ output of predictor c for residue i:

kc ¼ weighting coefficient of predictor c; determined below:

Parameterization of HingeMaster using
Least Squares Fitting

Least Squares Fitting is a simple method used to pro-

ject vectors onto a certain basis set, much as is done in a
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Fourier Transform to project arbitrary functions into the

basis of harmonic functions. We used the former tech-

nique to find the kc’s in Eq. (5) corresponding to an

optimal predictor. The procedure follows.

Let y 5 a column vector, the components y(i) of

which are the hinge annotations of the m residues in the

HAG, in the format 1 5 hinge, 0 5 nonhinge. The index

i counts over all residues in all proteins of the set in

question, which in this work will be either the training,

test, or complete HAG set. Order is unimportant as long

as the i’s in y are in the same order as the i’s in x, below.

Let x 5 an m 311 matrix, the rows of which will be

used to predict the rows of y. Each column of x is a an

m-component vector xc, such that c [ C. Each compo-

nent xc(i) of each such column vector is the output of

the predictor c for residue i. Correspondingly, x(i)

(without a subscript) is a row vector with 11 components

corresponding to the output each of the 11 predictors

emitted for residue i. Note that the last ‘‘predictor’’ is a

constant term used as an offset.

Let k 5 a column vector, the components kc of which
will give us the weight to be applied to the various pre-

dictors in order to make the composite HingeMaster pre-

dictor. Thus according to our definition of HingeMaster

[Eq. (5)]:

xLeast�squares ¼ xk � y: ð6Þ

To obtain k, we minimized the quantity (xk 2 y)2.

The least squares regression methodology is a standard

one42 which will not be derived here. The result is that

analytically:

k ¼ ðxTxÞ�1
xTy ð7Þ

The above Eq. (7) can be said to train k based on pre-

dictor output and gold standard annotation over some

set of residues i. The best available value of k is likely to

be one fitted using the set of all residues in all proteins

in the HAG, which we designate as {HAG}. That is to

say, in Eq. (7) we use x,y(i | i [ {HAG}) and obtain a

particular value of k which we call kHAG.

Parameterization of HingeMaster
using Boosting

Though simple, Least Squares Fitting results in a

powerful predictor, as will be shown. We nonetheless also

tried fitting the kc’s defined above using an alternate

machine learning technique called Boosting. This is a

standard technique described in,43 which we will briefly

outline here. As for Least Squares Fitting, the goal of

Boosting is to create a stronger classifier based on a series

of predictors with individually weaker performance. In

this setting, the outcomes of the hinge predictors are

used as feature vectors of our learning algorithm, but

instead of analytically minimizing (xk 2 y)2 as before,

we iteratively minimize a loss function e(xk,y) which

decreases exponentially with classification accuracy.

Boosting is a generic technique with several variants,

such as discrete AdaBoost which uses discrete predicted

labels at each iteration of the algorithm. Real AdaBoost

uses class probability estimates rather than discrete labels

to improve accuracy. Other variants change the loss func-

tion to be Logistic and the gradient search method to be

stochastic. For HingeMaster we use an extension of Real

AdaBoost called Gentle AdaBoost.44 It offers the advant-

age of using real valued class labels at each stage plus an

improved numerical performance compared to Real Ada-

Boost.45 The hinge residues comprise a small portion of

total residues, resulting in an imbalanced dataset. Under

these circumstances accuracy can trivially be maximized

by a predictor which classifies all residues as nonhinges.

To deal with this, we modify the method by oversampling

the gold standard hinge residues 99-fold, with re-

placement.46 Gentle AdaBoost is then run for 30 iterations

after which e(xk,y) converges to a minimum value. In the

cross-validation that follows, we use the class probability

estimates as a continuous predictor xprob_Boosting.

Cross-validating Least-Squares
HingeMaster parameters

Clearly HingeMaster, whether trained using Least

Squares Fitting or Boosting, cannot be tested on the

same dataset used to train it. For both cases, we therefore

validate HingeMaster by first randomly separating the 20

homologous pairs of proteins in HAG into a training set

consisting of 15 of these pairs (30 total protein struc-

tures) and a test set consisting of the remaining 5 pairs

(10 protein structures). The set of all residues in all pro-

teins in the training set we call {TRAINING}, while the

set of residues in the test set we call {TEST}. We used

Eq. (7) with the training set data x,y(i | i [ {TRAINING})

to obtain k*, the cross-validation value of k. We then

used this vector with the individual predictor results for

residues in the test set to obtain cross-validated Hinge-

Master results x*HingeMaster(i | i [ {TEST}) as follows:

x�HingeMasterði j i 2 TESTf gÞ ¼ k� � xði j i 2 TESTf gÞ
ð8Þ

We then generated a ROC curve by gradually decreas-

ing the threshold above which values of x*HingeMaster(i | i [
{TEST}) were taken to correspond to predicted hinge

locations, and comparing these to the annotated hinge

locations y(i | i [ {TEST}). For each value of the thresh-

old, residues i with scores x*HingeMaster(i) above that

threshold are taken to be test positives. We further classify

the test positives using a strict criterion, meaning that
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those that coincide exactly with annotated hinges (y(i) 5
1) are taken as true positives, those that coincide with

nonhinge residues (y(i) 5 0) are taken as false positives,

even if they are immediately adjacent to a hinge residue.

The generation of the ROC curve is explained in more

detail in prior work.20

We repeated the above process a total of 20 times.

Each time, we generated new {TEST} and {TRAINING}

sets by randomly dividing HAG as described. We

obtained 20 different values of k* vectors and generated

20 different sets of HingeMaster predictions. These were

then used to generate ROC curves representing average

performance. We report the average and standard devia-

tion of the HingeMaster parameters k* for Least Squares

Fitting, where these values have an intuitive interpreta-

tion.

We also asked the question, what would happen if we

modified our gold standard hinge definition to include

five residues to the left and right of the HAG hinges?

This is similar to the loose criterion, defined in the

Statistical benchmarks section. Doing this would increase

the number of True Positives at a given HingeMaster

threshold, but would also annotate as ‘‘hinges’’ residues

which clearly belong to a rigid domain. To answer this

question, ROC curves were generated using the thus-wid-

ened HAG definition.

Cross-validating Boosting
HingeMaster parameters

We underwent the process described above, with

minor variations, to cross-validate the Boosting parame-

ters. Instead of xleast2squares, we of course used xBoosting.

The {TEST} and {TRAINING} sets were generated in pre-

cisely the same way, but iteratively minimizing e(xk, y)
rather than (xk2y)2 resulted in different values of k*
even for the same data. The sum in Eq. (5) was con-

verted into a class probability xprob_Boosting as mentioned.

In every other respect the ROC curves were generated

precisely as above, by varying the threshold value of

xprob_Boosting above which a residue was taken to be a

hinge.

RESULTS

Weighting and evaluation of predictors

The fitting of kHAG and k* was carried out as

described above. The averages and standard deviations of

the resulting weighting factors are shown in Table II. We

evaluate the predictors using the statistical measures of

sensitivity (true positives/gold standard positives), speci-

ficity (true negatives/gold standard negatives), and

P-value (see discussion) in Table I. Note that these were

computed under the strict criterion, meaning that a test

positive was considered to be a false positive if it coin-

cided with a nonhinge residue, even if it was immediately

adjacent to an annotated hinge residue. The statistical

measures are explained in detail in the Supplementary

methods section and in prior work.20 The average ROC

curves generated from the HingeMaster 20-fold cross-val-

idation are shown in Figure 3. Four curves are shown,

representing the two methods (Least Squares and Boost-

ing), each trained and tested with two different gold

standards (unmodified and widened HAG).

Table II
Fitting of kc

HAG and kc*

c

xc

kc
HAG

kc
*

Description of c
Predicted
hinge

Predicted
non-hinge Average

Standard
deviation

1 1 1 0.042 0.062 0.010 Dummy constant for fitting
N 1 0 0.012 0.012 0.003 StoneHinge flexible regions
HingeSeq high low 0.004 0.004 0.001 Raw HingeSeq score; high values more likely hinge locations
TLSMD 0 1 20.029 20.048 0.009 TLS domain boundary, for N 5 2.5 putative domains
hNM1 low high 20.010 20.010 0.003 First normal mode displacement
hNMb 1 0 0.190 0.196 0.030 Continuous Domain Boundary Identifier most likely hinge location
hNMc 2,3,4.. 0 0.028 0.035 0.007 Secondary hinge predictions similar to but not reported by

the Continuous Domain Boundary Identifier
hNMd 1 0 20.0007 20.0006 0.0007 Regions excluded from contiguous domains
FO1 low high 20.008 20.012 0.002 Single-cut FlexOracle (with FoldX) energy, normalized

from 0 to 1. <0.05 5 hinge
FO1M 1 0 0.014 0.015 0.008 Minima of single-cut FlexOracle energy, identified

per Flores et al.
FO 1 0 0.189 0.165 0.022 Two-cut FlexOracle prediction

Values of c are given in the left column. The output xc is given for predicted hinge and predicted nonhinge residues, for each predictor c. For example, hNMa gives out-

put ranging continuously from 0 to 1, with the lower values more likely to correspond to hinge locations. hNMb, on the other hand, gives discrete output: 1 for pre-

dicted hinge locations and 0 for predicted non-hinge locations. Note that the sign of kc corresponds to whether higher or lower values correspond to hinges for that

predictor. c 5 1 is a dummy constant which compensates for the difference in mean values of predictors x vs. gold standard annotation y.
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Although the above summarizes the results of the vari-

ous predictors, it is illustrative to review the results of

the various predictors individually, for the 40 proteins in

the HAG. We made an online gallery of results for that

purpose at http://molmovdb.org/HAG. Links in this table

for each protein in HAG lead to a morph page showing

the motion between open and closed form of the protein,

results of running the various predictors on the open

and closed conformation, and the Protein Data Bank

(PDB) information page for the associated PDB-depos-

ited structure files. We also chose two of the forty pro-

teins to discuss in detail here (Figs. 2 and 4 and below),

and six more in the supplementary information.

Glutamine binding protein (GlnBP) (open)

Morph ID: f927198-20246 PDB ID: 1GGG

HAG hinges (residues 89,90,178–182)

Examination of results for individual proteins can

bring out salient features of the various predictors. As a

first example, we present Glutamine binding protein

(GlnBP). GlnBP of E. coli resides in the periplasmic

space, where it binds L-glutamine and subsequently

undergoes a conformational change that allows it to be

recognized by the membrane-bound components of the

permease system, which subsequently translocate the

nutrient into the cytoplasm against a concentration

gradient.

GlnBP is comprised of two domains linked by a hinge

region, the approximate location of which was arrived

upon by various authors using different methods. Pang

et al. annotated the hinge location by taking two extreme

projections of the protein coordinates along the second

normal mode eigenvector, and then used Hingefind to

identify a hinge point at residues 88 and 183, based on

these two structures.47 This is very different from the

HAG annotation procedure, which used two different

crystallographically obtained conformations of the pro-

tein. The so-named large domain contains both the N-

and C-termini and consists of two stretches of polypep-

tide, residues 1–84 and 186–226 according to Hsiao

et al.48 The small domain therefore consists of a single

stretch of polypeptide from residues 90–180. Hsiao et al.

simply took the entire PROCHECK49-identified antipar-

allel b-stranded region connecting the two domains (resi-

dues 85–89 and 181–185), as a hinge, again referring to

only one structure.

hNMb, and hNMd [Fig. 2(a,b) and 5(c)], and FO

[Fig. 2(c) and 5(c)], were successful, but hNMd overpre-

dicted the extent of the hinge region. Stonehinge frag-

mented the largest domain into several smaller domains

[Fig. 5(c)]. Thus, its predictions correspond to a flexible

loop in the second domain. The StoneHinge output

noted that this prediction likely did not correspond to

domain motion; however, as explained above, this note

was ignored for the HingeMaster predictions.

The TLSMD partition into 3 chain segments for

1GGG:A (Chain A) is quite accurate, placing the segment

boundaries at 88/89 and 182/183 [Fig. 5(c)]. For the sec-

ond chain in the structure, 1GGG:B, TLSMD instead

finds a boundary at 168/169 in the 3-segment split. The

TLSMD analyses of both chains A and B agree on N 5 4

boundaries at residues 90 � 2, 169 � 1, and 190 � 1.

The false positive boundary at 44/45 seen in this figure is

introduced when a 5th chain segment is requested.

hNMa shows global minima near the HAG hinges,

while FO1 is less clear about this. HingeMaster (with

Least Squares fitting) displays very clear peaks at or very

near the HAG hinges [Fig. 2(e)]. The ‘‘color by Hinge-

Master flexibility’’ feature available on our server is illus-

trated in Figure 2(d), where strong hinge predictions can

be seen to lie on the linker connecting the two domains.

Human lactoferrin

Morph ID: f964647-15593 PDB ID: 1LFG

HAG hinges: 90,91,250,251

Human lactoferrin (hLF) is an iron-binding glycopro-

tein found in exocrine fluids produced by mammals,

including milk, saliva, tears, bile, pancreatic fluid, and

mucous secretions. It has broad spectrum antibacterial

Figure 3
ROC curves representing average performance of HingeMaster in 20-fold cross-

validation tests. Least Squares (thick continuous red line) had slightly greater

Area Under the Curve (AUC) than Boosting (thick dashed black line), but the

slope at the origin was slightly greater for Boosting. When instead of the HAG

we used a gold standard which included five residues on each side of every HAG

hinge (similar to our loose criterion), performance deteriorated (thin continuous

red and thin dashed black lines represent Least Squares and Boosting,

respectively).
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Figure 4
Human lactoferrin (open, apo form), Morph ID: f964647-15593 PDB ID: 1LFG, HAG hinges: 90,91,250,251. In (a), the HAG hinge is shown in green, with domains on

either side colored differently. As seen in (b), HingeMaster makes a strong prediction for a hinge at residue 332 (four algorithms in agreement, C, see Figure 2 caption for

legend). This location does not appear in the HAG, but a search of the literature uncovered evidence for a hinge here. Lactoferrin is organized into two homologous

halves, named the N and C lobes. Each of these lobes is further subdivided into two domains: N1 and N2 in the N lobe and C1 and C2 in the C lobe. The opening of

these domains exposes an iron binding site in each lobe.52 The motion selected for Hinge Atlas Gold shows the N1 domain (shown in blue) rotating relative to the rest of

the molecule exposing the binding site in the N-lobe. Thus, the HAG hinges are located between the N1 and N2 domains. The hinge most strongly predicted by

HingeMaster, however, falls in between the C1 and N2 lobes and contributes to the movement of the two lobes relative to each other. As in the case of Troponin C,

experimental evidence is found for this hinge, as lactoferrin crystals grown at 277 and 303 K show rotation between the two lobes (Karthikeyan et al.). None of the

predictive measures identify a hinge point at 90/91 in the open form structure. However TLSMD analysis of the closed form of the same protein (PDB entry 1LFH;

Morph ID f964705-18231) finds segment boundaries at 91/92 and 249/250 for the 3-segment partition, corresponding exactly to the lactoferrin mobile domain boundaries

(not shown).
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Figure 5
Predictor results for HAG proteins at a glance (panels a-d). Rule at top indicates residue number along protein chain. Each protein is marked with protein name. Light

blue track represents residue numbers spanned by each protein. Green boxes indicate location of HAG hinge. Cyan, magenta, red, orange, blue, and purple bars indicate

hinge location predicted by FO, FO1M, StoneHinge, TLSMD, hNMb, and hNMd, respectively.
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Figure 5
(Continued)
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Figure 5
(Continued)
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Figure 5
(Continued)
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properties and seems to regulate the absorption and

excretion of iron in infants.50

The hinge bending motion of lactoferrin has been

studied in detail. The protein consists of N- and C-termi-

nal lobes which are highly homologous and are presumed

to have arisen from gene duplication. Each lobe is further

subdivided into two domains, N1 and N2, and C1 and

C2. In the iron-free form, a deep cleft appears between

N1 and N2. No such cleft appears in the C-lobe either in

the iron free or iron bound form, but this is believed to

be an artifact of crystallization. In the iron-bound form,

N1 and N2 are close together about a common hinge,

located between residues 90 and 91, and 250, and 251

according to Gerstein et al.51 This is in perfect agree-

ment with the independent annotation made in this

work.

The results for this protein are shown in Figure 4.

HingeMaster makes a strong prediction for a hinge at

residue 332 (StoneHinge TLSMD, hNMb, and hNMd in

agreement). This chain location does not appear in the

HAG, but a search of the literature uncovered evidence

for a hinge at this location. Lactoferrin is organized into

two homologous halves, named the N and C lobes. Each

of these lobes is further subdivided into two domains:

N1 and N2 in the N lobe and C1 and C2 in the C lobe.

The opening of these domains exposes an iron binding

site in each lobe.52 The motion selected for HAG shows

the N1 domain (in blue) rotating relative to the rest of

the molecule exposing the binding site in the N-lobe.

Thus, the HAG hinges are located between the N1 and

N2 domains. The hinge most strongly predicted by Hinge

Master, however, falls in between the C1 and N2 lobes

and contributes to the movement of the two lobes rela-

tive to each other. As in the case of Troponin C, experi-

mental evidence is found for this hinge, as lactoferrin

crystals grown at 277 and 303 K show rotation between

the two lobes (Karthikeyan et al.).

None of the predictive measures identify a hinge point

at 90/91 in the open form structure. However TLSMD

analysis of the closed form of the same protein (PDB

entry 1LFH; Morph ID f964705-18231) finds segment

boundaries at 91/92 and 249/250 for the 3-segment parti-

tion, corresponding exactly to the lactoferrin mobile

domain boundaries (not shown).

DISCUSSION

After completing the calculations, we carried out our

analysis of the hinge finding algorithms on two levels:

the quantitative level, which consisted of examining vari-

ous statistical benchmarks, and the qualitative level,

which consisted of interpreting results for individual pro-

teins. In this section we will discuss the quantitative sum-

maries and will also point out advantages and disadvan-

tages of the algorithms through the specific examples

presented in here and in the supplementary information.

In this section as before we will focus on StoneHinge,

TLSMD, hNMb, and FO, and to a lesser extent hNMd,

only intermittently referring to the various other subsidi-

ary predictors and HingeSeq.

Statistical benchmarks

We begin to get an idea of the predictive value of the

various methods from the weight assigned to each pre-

dictor, in Table II. Here, we see that hNMb and FO

receive by far the highest weights, hinting at high predic-

tive power, while TLSMD and StoneHinge get a more

moderate weight and hNMd gets almost no weight. This

cannot be taken as a rigorous statistical benchmark, how-

ever, since the predictors are not independent, and some,

such as FO and FO1M, are in fact very closely related.

For greater rigor, we computed the sensitivity, specificity,

and P-value associated with each predictor in Table I.

These statistical measures are explained in detail in prior

work.20

The sensitivity (true positives/gold standard positives)

was highest for FO, followed by Stonehinge, TLSMD, and

hNMb. FO was thus able to find the largest number of

hinge residues (62). As is customary we also report the

specificity (true negatives/gold standard negatives).

hNMb had the highest specificity, followed closely by FO

and TLSMD. Stonehinge and hNMd have lower specific-

ity, reflecting a tendency to predict the correct hinge

location but also to report a wide region about the anno-

tated hinge location as a predicted hinge. We also eval-

uated the statistical significance by postulating a null

hypothesis that the test positive residues were taken ran-

domly and without replacement from the population of

residues in HAG. Under this hypothesis, the mean fre-

quency of hinges is the same in the test positive set as in

HAG. For each predictor, we computed the probability of

finding the observed number or more of annotated hinge

residues in a randomly selected set equal in size to the

number of test positives reported by the predictor. We

computed this quantity using the cumulative hypergeo-

metric distribution.20 Clearly, FO has the highest statisti-

cal significance (lowest probability that the null hypothe-

sis is correct). hNMb has a higher (but still impressive)

P-value than FO.

Part of the reason FO had lower specificity than

hNMb is because FO only attempts cuts on the backbone

at four residue intervals, while hNMb probes every possi-

ble pair of residues as a possible continuous domain

boundary. As a result, FO predicts four-residue wide

windows as possible hinge locations, with some uncer-

tainty as to the exact location of the best putative hinge.

hNMb, on the other hand, reports two-residue windows

as putative hinge locations, and these are presumed to be

the best choice of hinge possible for that method.
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With regard to the P-value, the reader should recall

that this quantity changes based on the size of the data-

set. Therefore this number can only be used to compare

predictors tested on the same data. By this measure, FO

was by far the most discriminating predictor, followed by

hNMb.

As explained earlier, the sensitivity, specificity, and

P-value were computed under the strict criterion for sta-

tistical rigor. However, for an application most users

would probably consider a prediction that came within

about five residues of the correct hinge location to be a

true positive. So we examined each of the 40 proteins

and labeled each as a success, partial success, or failure

on the basis of a loose criterion for each predictor c. A

test was considered a success under this criterion if each

prediction came within five residues of an annotated

HAG hinge, and vice versa. It was a partial success if at

least one prediction matched one HAG hinge, but one or

more predictions were more than five residues from a

HAG hinge, or vice versa. It was a failure if no predic-

tions were within five residues of a HAG hinge. The eval-

uation for each protein under the loose criterion is pre-

sented in supplementary Table V.

We counted the number of successes, partial successes,

and failures for the five most interesting predictors in Ta-

ble III. As can be seen, FO scored the most successes, fol-

lowed by hNMd and hNMb. TLSMD had no successes,

but this is due to the fact that as implemented on our

server it reports all domain boundaries for up to five

domains. Since the proteins in HAG have at most three

hinges, some of the TLSMD predictions would be

expected to have no corresponding HAG hinge.

FlexOracle (FO)

The FlexOracle algorithm has the best predictive ability

by several measures. It had the highest sensitivity and

lowest P-value (Table I). It had the most successes under

the loose criterion (Table III). Results for individual pro-

teins (supplementary Table V) show that FO failed for

Calmodulin, Troponin C, and Elastase of Pseudomonas

Aeruginosa, suggesting the method cannot deal well with

proteins that depend on bound metals for stability and

motion. It also fared poorly for the two proteins with

three hinge points, as would be expected for a predictor

intrinsically limited to two hinge points (supplementary

Table V).

hNMb, hNMd

hNMb and hNMd are complemented by FO, as can be

seen by several cases for which FO fails but hNMb and/

or hNMd succeed (Fig. 5), as was the case for five pro-

teins: the (open) metal-bound form of calmodulin, bac-

teriophage T4 lysozyme (closed), cAMP dependent pro-

tein kinase (closed), elastase of pseudomonas aeruginosa

(open), and inorganic pyrophosphatase (closed).

The hNMd method has a strong advantage in that

unlike FO and hNMb, it is not intrinsically limited by

the number of strands in the hinge. In particular, we

note that FO and hNMb both completely failed to pre-

dict the triple stranded hinge in cAMP dependent protein

kinase, while Stonehinge and TLSMD either failed or had

partial success. For the closed form of this protein hNMd

was the only successful predictor. For the open form, one

of the three hinge points is in a disordered region that

does not appear in the crystal structure. hNMd has a

cluster of hinge predictions centered about that break in

the chain and therefore it was arguably as successful as

could be expected under the circumstances. The same

argument could not be made for the other predictors, as

the reader can verify by examining Figure 5.

In general, we find that residues identified by hNMd

coincide to a high degree with the general location of the

hinge. However the predicted hinge regions were broad,

lowering the specificity and raising the P-value.

TLSMD

As mentioned earlier, because hinges for N 5 1,2,3,4,5

are reported together, the set of TLSMD ‘‘hinge predic-

tions’’ for each protein will be larger than the actual

number of hinge points. That is, the forced partition of a

3-domain protein into only two segments will tend to

create a ‘‘false’’ breakpoint somewhere inside the middle

domain, rather than finding either of the two ‘‘true’’ do-

main boundaries. Even if the two correct boundaries are

found by the TLSMD partitions for N � 3, this initial

false prediction will remain in the prediction set. This

results in a poorer showing on a ROC curve if the extra

predictions are treated as false positives. An alternative

would have been to manually filter out these extra break-

points based on visual inspection of the structure, but we

were reluctant to introduce possible experimentor bias.

On the basis of the outcome of the evaluations presented

here, and on the observed distribution of actual hinge

points in the larger set of TLSMD breakpoints, we hope

to be able to automate such filtering in the future. To a

significant extent, however, this filtering is done by Hin-

geMaster. The StoneHinge, hNMa, hNMd, and FO1 pre-

dictors, which have many predictions and low specificity,

Table III
Summarized Performance Under the Loose Criterion

StoneHinge TLSMD hNMb hNMd FO

Successes 8 0 17 19 23
Failures 20 12 14 13 12
Partial successes 12 28 9 8 5
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tend to ‘‘select’’ the TLSMD breakpoints corresponding

to domain hinge motion, while ‘‘deselecting’’ those corre-

sponding to fragment hinges or other motions.

We found that some of the hinges predicted by

TLSMD were close to HAG hinges with high frequency.

The remaining TLSMD predictions often correctly

reflected motions of fragments smaller than domains,

and these tended not to coincide with the predictions of

other methods. An additional stage of either manual or

automated curation of the TLSMD results would remove

most of these fairly easily. In particular, TLSMD would

benefit greatly from an improved ability to combine mul-

tiple chain segments from the initial analysis to yield a

description of ‘domains’ in the usual sense. The MurA

analysis in the supplements provides a good example of

this. The essential features of the structure are captured

well by the TLSMD partition into six continuous chain

segments. The close three-dimensional proximity of the

boundaries at residues 20/21 and 228/229 are easily inter-

preted as belonging to a single inter-domain hinge; the

further subdivision of the obvious continuous domain

into three chain segments is easily interpreted as the

presence of a small flexible loop (residues 108–127) pro-

truding from a larger continuous domain. The C-termi-

nal tail of 	20 residues is also flexible, but is not relevant

to the primary inter-domain flexibility. Thus a curated

interpretation of the TLSMD analysis of MurA would list

three features: A two domain protein with an inter-do-

main hinge points at residues 20/21 and 228/229; a sec-

ondary set of hinge points corresponding to a flexible-

loop (108–127) in one of the domains; and a flexible C-

terminus.

StoneHinge

We discussed the fact that TLSMD overpredicts, since

it reports more hinges than are annotated in HAG.

StoneHinge also had a significant rate of false-positive

hinge predictions (Table IV), This is typically caused by

StoneHinge underpredicting the size of the rigid

domains, such as in the open form of ovotransferrin. In

that case, StoneHinge predicted that the second domain

spanned residues 121–171. However, observation of the

motion reveals that this domain spans residues 93–245.

This underprediction of the rigid domain leads Stone-

Hinge to overpredict the span of the hinge. Additionally,

a number of StoneHinge’s over- and mis-predictions are

flagged as such by StoneHinge. As noted above, if either

rigid domain is predicted to be less than twenty residues,

StoneHinge reports that the predicted hinges are unlikely

to correspond to domain motion (again, this eventuality

is ignored for HingeMaster).

We note that when both TLSMD and StoneHinge pre-

dict a hinge, two-thirds of the time it coincides with a

HAG hinge. Likewise, most experimentally defined hinges

are predicted by either StoneHinge or TLSMD, account-

ing for the substantial weight they receive in HingeMas-

ter. In the cases where either StoneHinge or TLSMD

misses a hinge, it is usually predicted by at least one of

the other predictors. Notably, experimentally defined

hinges virtually always occur within the lower 10% of the

hNMa atomic displacement function. Accordingly, the

predictive confidence of HingeMaster is strong when at

least three of these methods predict a hinge at a given

site (or within a few residues of it). As with computa-

tional hinge detection, experimentally defined hinges can

be identified based on different criteria. For instance, one

researcher might identify them based on the observation

of large, localized, noncompensatory changes in main-

chain dihedral angles, whereas another might identify

hinges based on large main-chain B-values (which can

reflect rigid-body motions of a well-ordered structure in

one case, but a lack of well-defined local structure in

another). Thus, there is a distinct possibility that the var-

ious hinge predictors are identifying hinges that represent

different mechanisms of motion, especially with regard to

how localized or disseminated that motion is. By defining

different hinge mechanisms and algorithms for detecting

them, we hope to ultimately clarify the kinds of motion

that occur in proteins, and provide tools that will aid in

annotating experimental structures.

Least squares versus Boosting,
and width of hinge region

The Least Squares method of training HingeMaster

resulted in a powerful predictor, as demonstrated by a

ROC curve with large Area Under the Curve (AUC) and

high, nearly vertical slope at the origin. We nonetheless

investigated whether a more sophisticated algorithm

could improve results. Despite its additionally complexity

Boosting was found to yield results only marginally dif-

ferent from those of Least Squares fitting (see Fig. 3).

One must bear in mind that the hinge residues are a

small portion of total residues, therefore the Gold Stand-

ard Positives used for training are a very small set. Under

these circumstances, classifiers with many adjustable pa-

rameters suffer from the problem of overfitting,53 and

Table IV
Predictors at a Glance

Predictor Basis Max. hinge points

FlexOracle Free Energy of folding 2
hNMb Normal modes 2
hNMd Normal modes No limit
TLSMD Experimental thermal factors No limit
StoneHinge Bond network topology No limit

Three of the predictors have no limit on number of hinge points in principle but

on our server TLSMD only reports boundaries based fragmenting the protein into

as many as to 5 domains. Domain motions with a very large number of hinges

are unlikely for proteins of the size range considered here.
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simpler methods are appropriate. The version of Hinge-

Master offered on our server and discussed in most of

this work was trained using the Least Squares method.

We also sought to determine whether HingeMaster

would benefit from training with a gold standard that

included not only the HAG hinges, but in addition all

residues within five residues of the nearest HAG hinge,

similar to the loose criterion. This is a much more for-

giving definition of the hinge. However the gold standard

thus generated included residues which clearly belonged

to one or another rigid domain and so was of lower

quality. Correspondingly, the results were found to dete-

riorate for Least Squares as well as Boosting, as evidenced

by ROC curves with significantly lower AUC (Fig. 3).

Complementarity of methods

Since the various predictors are based on very different

information (Table IV), their strengths and weaknesses

are complementary. In particular, FO and hNMb are lim-

ited to single- and double-stranded hinges. hNMd, how-

ever, has no such limitation and may be more successful

in these cases (supplementary Table V). Similarly, FO is

susceptible to bound metals that play a significant role in

stabilizing the protein, but hNMb and hNMd is reason-

ably successful in these cases. TLSMD is comparatively

weak at distinguishing domain from non-domain

motion, but can find smaller scale motions not detected

by FO and hNMb, and its accuracy is unaffected by

bound metals. Stonehinge lacks precision but is good at

finding the general region of the hinge. Altogether, only

a few hinges escaped detection by one or another of the

methods. The combination of highly specific predictors

which usually did well but were sometimes somewhat off

the mark, with predictors which identified broad swathes

where the hinges were likely to be, resulted in a predictor

of variable sensitivity, as we will discuss. The output of

HingeMaster strongly indicates the pinpointed location

of the hinge predicted by FO and hNMb, but less dra-

matically points out alternative locations. When inter-

preted by a critical eye, these results could bring insight

even when one or more of the predictors are incorrect.

Some of this is visible in the results for individual pro-

teins as discussed.

CONCLUSIONS

We demonstrated the strengths and weaknesses of sev-

eral predictors, including a set of normal mode based

tools. We show that for 29 of the 40 proteins in HAG at

least one predictor is completely successful under the

loose criterion. For 10 of the remaining 11, at least one

predictor was partly successful. HingeMaster weighs the

correlation of each predictor to the HAG hinge annota-

tions and presents the combined results in a visually

understandable way. This combined predictor is shown

to robustly produce ROC curves demonstrating high pre-

dictive power.

WEB TOOLS

Hinge prediction server

Most of the predictors discussed here can be run by

the public on single-chain proteins by making a submis-

sion through the hinge prediction server linked from the

front page of our server, molmovdb.org. When the job is

complete, the user receives an email with a link to the

generated morph page. The ‘‘Hinge Analysis Tools’’ box

has links to output from the five predictors. The most

useful of these is the ‘‘Combined predictor page,’’ which

shows the results of all analyses in a single graph, as was

done for this article. Also, buttons are available to high-

light the hinges predicted by HingeMaster, TLSMD, and

StoneHinge in the jmol window. It is possible to color

the protein by HingeMaster flexibility, as we will describe

below.

Hinge annotation tool

To manually annotate the hinges in a submitted pro-

tein, one can use the Hinge Annotation Tool in the hinge

analysis toolbox, on the morph page. This tool consists

of three rows of arrow buttons which allow for the selec-

tion of up to three hinge locations. A ‘‘?’’ button on each

row returns the residue number of the current selec-

ted hinge location. A ‘‘Show all’’ button highlights all

selected hinge locations. A ‘‘Reset highlighting’’ button

returns to the default view. The ‘‘Submit’’ button must

be clicked for these annotations to be entered into our

database. There will appear a ‘‘display public hinge’’ but-

ton which will allow all users to view the selected resi-

dues in the jmol window. With minor modification, this

tool was used to annotate the HAG hinge locations used

in this work. It is possible to create rendered images with

hinges highlighted as we explain below.

Render studio

As discussed above, high resolution ‘‘domain style’’

images similar to those in the figures can be generated

by the public by following these steps:

1. Select up to three hinge points using the Hinge Anno-

tation Tool, as described above. Click on the ‘‘Submit’’

button.

2. Orient the molecule to the desired perspective by

clicking and dragging in the Jmol window.

3. Click on the ‘‘color by domain’’ link.

The coloration of the domains goes by the following

logic. All the residues prior to the first hinge point are

HingeMaster
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assigned to domain D1, all the residues between the first

and second hinge points belong to D3, all the residues

between the second and third hinge points belong to D1,

and all subsequent residues belong to D3, and so on. The

hinge residues themselves belong to D2. D1 is colored or-

ange, D2 is green, and D3 is blue.

To color by HingeMaster flexibility step 1 above is

unnecessary; in step 3 click instead ‘‘color by HingeMaster

score.’’ In either case after a slight delay, a pop-up window

will display the generated image. A variant of this tool was

used to generate some of the images in this paper.
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