Deciphering the Three-Domain Architecture in Schlafens and the Structures and Roles of Human Schlafen12 and SerpinB12 in Transcriptional Regulation

Jiaxing Chena,1 and Leslie A. Kuhna,b

aProtein Structural Analysis and Design Lab
Department of Biochemistry and Molecular Biology
Michigan State University
603 Wilson Road
East Lansing, MI 48824-1319 USA
www.kuhnlab.msu.edu

bCorresponding author; e-mail address: KuhnL@msu.edu

1Current address: Bioinformatics and Genomics Graduate Program,
Pennsylvania State University, 201 Huck Life Sciences Building, University Park, PA 16802 USA
The GTPase-like C-terminal region of hSLFN12 may participate in cytoskeleton interactions and differentiation-related changes in cell morphology

Other potential roles for the GTPase-like domain in schlafens (described in Figure 2 and section 3.5 in the corresponding article) are interacting with the actin cytoskeleton for intercompartmental shuttling and generating differentiation-related changes in cell morphology. Dynamin is part of a network controlling the nucleation of actin from membranes [1]. Cytoskeletal filamentous actin provides a framework for RITS and is also required for RNA polymerase II transcriptional activity [2,3]. Villin, a protein whose expression is stimulated by hSLFN12 and hSerpinB12 [4], bundles, nucleates, caps, and severs actin and induces the growth of microvilli during differentiation, resulting in enterocytes with the ability to absorb nutrients [5,6]. A dynamin homolog, the GTPase Rab11a, has been found to be essential in mice for the correct localization of proteins to the apical microvilli of enterocytes, promoting brush border formation [7]. The hSLFN12 GTPase-like domain could play analogous roles to those observed for dynamin and Rab11a. Very interesting work on human mesenchymal cells has shown that rho GTPase, a homolog of dynamin and the C-terminal domain of hSLFN12, governs the shape of cells during differentiation by controlling actin-myosin tension. In particular, the effects of rho GTPase on cell shape (e.g., round, or flattened and adherent), are sufficient to govern whether cells differentiate into adipocytes versus osteoblasts [8]. Rho GTPase also promotes the differentiation of smooth and skeletal muscle cells [8]. Thus, several GTPases related to hSLFN12 have known activity in actin-related, differentiation-associated shuttling of proteins and changes in cell shape, suggesting additional roles for the GTPase region in hSLFN12.

References
