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Abstract: We show that machine learning can pinpoint features distinguishing inactive from 20 
active states in proteins, in particular identifying key ligand binding site flexibility transitions in 21 
GPCRs that are triggered by biologically active ligands.  Our analysis was performed on the 22 
helical segments and loops in 18 inactive and 9 active class A GPCRs.  These 3-dimensional 23 
structures were determined in complex with ligands.  However, considering the flexible versus 24 
rigid state identified by graph-theoretic ProFlex rigidity analysis for each helix and loop segment 25 
with the ligand removed, followed by feature selection and k-nearest neighbor classification, was 26 
sufficient to identify four segments surrounding the ligand binding site whose flexibility/rigidity 27 
accurately predicts whether a GPCR is in an active or inactive state.  GPCRs bound to inhibitors 28 
were similar in their pattern of flexible versus rigid regions, whereas agonist-bound GPCRs were 29 
more flexible and diverse. This new ligand-proximal flexibility signature of GPCR activity was 30 
identified without knowledge of the ligand binding mode or previously defined switch regions, 31 
while being adjacent to the known transmission switch. Following this proof of concept, the 32 
ProFlex flexibility analysis coupled with pattern recognition and activity classification may be 33 
useful for predicting whether newly designed ligands behave as activators or inhibitors, based on 34 
the pattern of flexibility they induce in the protein.   35 

Keywords: GPCR activity determinants; flexibility analysis; coupled residues; allostery; ProFlex; MLxtend; 36 
feature selection; pattern classification 37 
 38 

1. Introduction 39 
Recognizing the features of small, drug-like ligand molecules and protein structures that 40 

synergize to create an active protein state (binding to an agonist ligand) versus an inactive protein 41 
state (binding an inhibitory ligand) is essential to design drugs with predictable effects on the 42 
protein and organism. Much drug discovery research has focused on mimicking small molecule 43 
ligands of known activity (when available), either by incorporating very similar chemical groups 44 
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that lead to cost-effective synthesis and favorable bioavailability and toxicity profiles, or by 45 
mimicking the 3-dimensional volumes and chemical surface features of such molecules [1–3].  It is 46 
not uncommon for such molecules to bind the protein with moderate to high affinity, but not 47 
always with the activating or inhibitory effect that is sought.  In this work, we focus on the other 48 
side of the interface, seeking a general method that can learn from a series of active and inactive 49 
structures in a protein family to identify the shared subset of protein features (without using ligand 50 
information) that are reliable indicators of whether the protein is in an active or inactive state. 51 
Identifying shared conformational changes, hydrogen bonds, hydrophobic contacts, and surface 52 
shape between protein structures has been carefully explored in GPCRs [4–7].  Sharing of features 53 
at an atomistic scale is dependent on conservation of the binding site and ligand type, however, and 54 
therefore fine-scale features are unlikely to be shared across complexes in a diverse family.  55 
Instead, we seek the signature of a shared flexibility mechanism, in the form of protein regions 56 
whose flexibility or rigidity in the ligand-bound state form recognizable patterns across active (or 57 
inactive) structures in the family.  We then explore whether a small number of these intrinsic 58 
flexibility features can reliably predict whether a given protein is in an active or inactive state.   59 

We present this methodology and apply it to individual structures of different class A GPCRs 60 
in a variety of conformations induced by small molecule agonists or antagonists, to discover hidden 61 
commonalities in flexibility/rigidity between the active (or inactive) states.  The results provide 62 
new insights into how ligand binding to the orthosteric site (accessed from outside the cell) in this 63 
class of GPCRs can create flexibility changes adjacent to the transmission switch residues, which in 64 
turn undergo conformational changes acting as an on/off switch for binding intracellular protein 65 
partners and signaling to downstream partners.  The shared changes in flexibility between GPCRs 66 
upon inhibitor or agonist binding also help distinguish key activity-relevant protein contacts of the 67 
inhibitors, and elucidate how inhibitors alter the network of intraprotein contacts to create 68 
biologically and pharmaceutically relevant responses.   69 

For this analysis, we employed ProFlex, a successor to FIRST [8], an efficient and accurate tool 70 
for evaluating flexibility and rigidity within protein structures.  Instead of analyzing 71 
conformational changes or dynamics,  ProFlex analyzes the constraint network formed by covalent 72 
bonds, hydrogen bonds, and hydrophobic contacts to identify constrained (rigid) regions within a 73 
structure, as well as regions that are flexible and free to move due to the presence of fewer 74 
constraints. Coupling within rigid regions or flexible regions (e.g., cooperatively flexible loops) is 75 
also assessed automatically by ProFlex, with the rigid or flexible segments in a protein ranked from 76 
most rigid to most flexible. These segments may be as small as a few atoms (e.g., the cyclopropyl 77 
ring within proline) or as large as the entire protein, with no need for the user to partition atoms 78 
into artificial groups (e.g., main chain or side chains). ProFlex evaluates all covalent, hydrogen 79 
bond, and hydrophobic interactions and bond-rotational degrees of freedom within the system as a 80 
molecular graph on which bond and bond-angle constraints are counted, following the structural 81 
engineering theory developed by James Clark Maxwell, as extended to 2D and 3D atomic systems 82 
by Hendrickson, Jacobs, Thorpe, and Kuhn [8–11].  83 

The goals of this study were twofold: (1) predicting with high accuracy whether GPCR 84 
structures are in active or inactive states, and (2) providing intuitive and human-interpretable 85 
insights into the underlying patterns associated with the predictions. To identify a subset of GPCR 86 
segments for making accurate activity predictions using a k-nearest neighbor classification model, 87 
we employed sequential and exhaustive feature selection algorithms. While exhaustive feature 88 
selection is guaranteed to find optimal feature subsets that maximize predictive performance, this 89 
combinatorial search problem is computationally intractable on large feature spaces. Hence, we 90 
employed sequential feature selection as a pre-filtering approach, which provides an excellent 91 
compromise in efficiency and effectiveness, to filter for feature subsets that maximize prediction 92 
accuracy of a k-nearest neighbor classifier before identifying the optimal feature subset via 93 
exhaustive search. All machine learning approaches employed in this study (exhaustive feature 94 
selection and k-nearest neighbor classification) are easy to use, yield intuitive results by 95 
highlighting the relative importance of predictive features, and are freely available from GitHub 96 
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through the open source libraries MLxtend (http://rasbt.github.io/mlxtend/) and Scikit-learn 97 
(https://scikit-learn.org) [12,13]. 98 

The predictive motif ultimately identified by the ProFlex machine learning analysis in this 99 
work involves a tendency for the extracellular ends of helices 2, 3, and 5 and extracellular loop 1 100 
surrounding the ligand binding site to be mutually rigid in inactive structures, as described in the 101 
Results.  The ionic lock, transmission, and tyrosine toggle conformational switch motifs identified 102 
by other researchers and reviewed in [14] involve different regions: the intracellular end of helix 3, a 103 
nonoverlapping segment of helix 5, and regions in helices 6 and 7.  Thus, the ProFlex analysis 104 
provides new information and reveals commonalities in the ways different inhibitors induce an off 105 
state in class A GPCRs.  This is important, because GPCRs comprise ~34% of all approved human 106 
drugs [15], and the goal of drug design for many GPCRs is to downregulate their activity. Beta 107 
blockers are one well-known class of inhibitory GPCR drugs, reducing blood pressure to 108 
substantially reduce cardiovascular risk, and intraocular pressure in glaucoma to prevent retinal 109 
damage; yet other GPCRs are targeted to control schizophrenia, allergies, and depression [16].  110 
Our goal is to identify key regions in proteins that regulate their activity, on which researchers can 111 
then focus to improve drug design, as discussed in the Conclusions. 112 

Two software utilities, BAT and BRAT (for B-value [Residue] Alignment Tool), have been 113 
developed in this work and are also available via GitHub (https://github.com/psa-lab/ 114 
Protein-Alignment-Tool). BRAT facilitates identifying and visualizing the correspondence between 115 
user-defined sequence segments (such as ligand-binding residues) and residue numbers in one 116 
protein when aligned with a sequence-divergent homolog using Dali structural superposition [17].  117 
BAT aligns and visualizes the temperature factor values (B-values), or other numeric properties 118 
recorded in the B-value column of PDB-formatted protein structure files, across a number of 119 
user-selected, structurally aligned proteins. 120 

2. Materials and Methods  121 

2.1. Selecting GPCR Structures  122 
Diverse class A GPCR structures in the Protein Data Bank (PDB; https://www.rcsb.org; [18]) 123 

were selected for analysis, following these criteria: resolution of 2.9 Å or better, to ensure 124 
well-defined atomic positions and identification of appropriate non-covalent interactions; no pairs 125 
of structures within the active or inactive sets with 80% or higher sequence identity, with the 126 
exception of PDB entries 2YDV and 3QAK, which are bound to significantly different ligands (Table 127 
1).  When possible, the same GPCR was represented by a structure bound to both an 128 
activating/agonist ligand and an inhibitory/antagonist ligand (as defined by the crystallographers).  129 
The resulting 18 inhibitor-bound GPCRs and 9 activator-bound GPCRs appear in Table 1, with the 130 
ligand, resolution, and R-factor (R value) data for each entry.  Crystallographic R values measure 131 
the percentage difference in electron density when the data gathered from the diffraction 132 
experiment is overlaid with the electron density calculated from the atomic model that was fit into 133 
the electron density by the crystallographer, based on the known number of electrons associated 134 
with each atom type.  A problem with this R(work) definition for assessing structural quality is 135 
that the refinement software used in structure determination is often designed to improve the fit 136 
between the model and the experimental electron density, which improves (lowers) the R(work) 137 
value but introduces bias. The R(free) value is used as a less biased measure of structural agreement 138 
between the fitted structural model and the electron density data.  To calculate R(free), 10% of the 139 
experimental observations are removed from the data set before refinement, and the refinement is 140 
then carried out with the remaining 90%. The R(free) value, also reflecting the percent difference in 141 
electron density between the experimental data and fitted model, is measured by comparing the 142 
electron density of the model fitted and refined to the 90% data set with the experimental electron 143 
density calculated from the held-out 10% of the data.   For an ideal structure, the R(free) value is 144 
close to the R(work) value, though typically it is higher.  Lower values for both R(free) and 145 
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R(work) are more favorable, showing greater agreement between the experimental data and the 146 
structure (https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/r-value-and-r-free). 147 

Table 1.  Crystal structures of inactive and active ligand-bound GPCRs analyzed.  Ligands were 148 
removed prior to ProFlex analysis to focus on protein flexibility changes in inactive versus active 149 
proteins. See section 2.1 for definitions of R(free) and R(work) 150 

2.2. Defining Regions in GPCR Structures for Machine Learning 151 
While ProFlex groups atoms that are flexible (or rigid) according to the natural partitioning of 152 

degrees of freedom in the protein chain following constraint-counting of covalent and non-covalent 153 
interactions in the bond network, machine learning with feature selection requires features that are 154 
consistently defined across the analyzed proteins. A natural feature representation, given the goal 155 
of identifying flexibility motifs in the protein associated with active or inactive states, is to segment 156 
the GPCR structures into small regions (Figure 1), and report the degree of flexibility in each region 157 
following ProFlex assessment. Accordingly, the extracellular (ECL) and intracellular (ICL) loops 158 
and canonical transmembrane helices (H1-H7) and C-terminal intracellular helix (H8) were 159 
numbered sequentially from the N-terminus to C-terminus, and then tabulated for each of the 27 160 
protein structures.  Each transmembrane helix was further segmented into 3 parts: the segment 161 
closest to the extracellular surface (e.g., H1.1 for helix 1), the most membrane-buried segment 162 
(H1.2), and the segment closest to the intracellular surface of the membrane (H1.3). This tripartite 163 
segmentation for transmembrane helices is based on prior observations that the extracellular, 164 
interior, and intracellular segments of transmembrane segments have different amino acid sequence 165 
attributes, and therefore it can be advantageous for structural predictions to consider the regions 166 
separately [19,20]. Figure 1 shows the resulting 29 segments considered in each GPCR structure 167 
(H1.1, H1.2, H1.3, ICL1, etc.) along with activity switch regions that have been characterized in class 168 
A GPCRs (the ionic lock, transmission switch, and tyrosine toggle; reviewed in [14]).  The first 169 
extracellular loop in the GPCRs, preceding H1, was not included in the analysis. Its length and 170 
structure vary enormously across GPCRs, and this loop is often removed or altered in protein 171 
constructs prior to crystallization or fails to yield reliable atomic coordinates due to high mobility.  172 
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Figure 1. Class A GPCR architecture, partitioned into segments for machine learning analysis.  173 
Extracellular loops are labeled ECL1, ECL2, and ECL3 from N-terminus to C-terminus, and the 174 
intracellular loops are labeled ICL1, ICL2, and ICL3.  Each transmembrane helix is divided into 175 
three segments, extracellular, interior, and intracellular, and indexed first by the helix number, e.g., 176 
H1, then by the segment of helix from N-terminus to C-terminus.  For instance, H1.2 is the second 177 
(interior) segment of helix 1.  Helix 8, which is intracellular and shorter, was divided into two 178 
segments.  Previously characterized activity switch regions and their key amino acid residues in 179 
GPCRs - the ionic lock, transmission switch, and tyrosine toggle – are also annotated [14]. The 180 
residues shown are those found in human CXCR4 (PDB entry 3ODU). 181 

2.3. Performing and Interpreting ProFlex Analysis  182 
To prepare PDB structures for ProFlex analysis, water molecule and hydrogen atom positions 183 

(which are absent or variably assigned between structures) and any ANISOU data records were 184 
removed. (These records encode anisotropic mobility data, with the same atomic coordinates 185 
repeated for the x, y, and z directions of motion; repeated atomic coordinates would be 186 
misinterpreted as new atoms by the software.)  All ligands, as well as protein chains not relevant 187 
to the biological state of the protein (e.g., antibodies used to aid in crystallization) were removed 188 
before ProFlex analysis (v 5.2; https://github.com/psa-lab/proflex; [8,11]). Hydrogen atom positions 189 
were then added consistently to all structures, in optimal orientations for hydrogen bonding, using 190 
the OptHyd method in the molecular mechanics package YASARA Structure (v 16.4.6; 191 
http://www.yasara.org; [21]). Hydrogen atom positions may alternatively be assigned using other 192 
molecular mechanics software or Reduce (https://github.com/rlabduke/reduce). ProFlex was run as 193 
defined in the SiteInterlock protocol (https://github.com/psa-lab/siteinterlock with detailed 194 
documentation at https://psa-lab.github.io/siteinterlock/index.html; [22]), without the ligand 195 
conformational search and docking steps preceding ProFlex, as the GPCR structures were analyzed 196 
without ligands.  An appropriate hydrogen bond energy cut-off for ProFlex flexibility/rigidity 197 
analysis, defined by the HETHER routine (https://github.com/psa-lab/siteinterlock/blob/master/ 198 
scripts/proflex_hether.py) in the SiteInterlock protocol, was option C, the energy closest to (but less 199 
than) the level at which 70% of the protein residues were rigid.  200 

Homology models for GPCRs contribute importantly to the field, given the difficulty of 201 
preparing native-like, pure membrane proteins for experimental structural determination.  202 
However, in past work, we noted that homology modeling does not always provide precise enough 203 
locations for the donor and acceptor atoms of hydrogen bonds, resulting in fewer identified bonds 204 
and underconstrained, overly flexible results from ProFlex.  However, other aspects of a protein 205 
structure that are less dependent on positional resolution, such as the spatial location of different 206 
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amino acid types and their clustering in protein structures, could also be good predictors of sites 207 
important for protein activation.  Such alternative types of data as features can be used and tested 208 
as predictors with the same machine learning approach.     209 

Aside from the structural resolution caveat, there is no fundamental limitation to the 210 
application of this method to any protein family for which 3D structures and at least one known 211 
active case and one inactive case are available.  That said, we would not advise mixing GPCRs 212 
from different families together, because the structures between GPCR families differ, as do their 213 
molecular partners and mechanisms of activation (especially for GPCRs that bind ligands in an 214 
extracellular domain).  In different GPCR families, a different set of features may be key to 215 
activation.  They can be unveiled by the machine learning feature selection approach described 216 
here when trained on that particular family.  Another aspect that can vary from family to family is 217 
whether the automatically chosen ProFlex energy level (HETHER option C, mentioned above) is 218 
appropriate for that particular family.  This can be assessed most readily by a user knowledgeable 219 
about the protein family, by inputting to ProFlex a well-characterized active structure, then a 220 
well-characterized inactive structure, and visually identifying the energy level in the two ProFlex 221 
hydrogen bond dilution profiles (e.g., Figure 2A) that best identifies the known 222 
(literature-described) flexibility features that differ between the active and inactive states. Once that 223 
energy level is established, ideally by evaluating more than one protein in the family, it can be used 224 
as the ProFlex energy threshold for predicting the active/inactive state of other family members. 225 
Because known exemplars of active and inactive states are used by the KNN classifier as the basis 226 
for predicting the activity of new structures, including more known examples may also improve the 227 
predictive accuracy. 228 

The interplay between ProFlex and the KNN classifier used for prediction (Figure 2) begins 229 
with the hydrogen bond dilution (HBdilute) results from ProFlex.  ProFlex includes all the 230 
hydrophobic and hydrogen bond interactions it detects in the protein structure using stringent 231 
geometric criteria [11]. The topmost data record (line) in the HBdilute results for PDB entry 2RH1, 232 
human β2-adrenergic G protein-coupled receptor (panel A), shows the rigid regions (colored bars) 233 
and flexible regions (black lines) in the protein, from N-terminus to C-terminus, labeled by residue 234 
number along the top.  The red bars indicate residues contributing to the largest rigid region in the 235 
protein, which at this energy level includes most of the structure except for a loop in the second half 236 
of the sequence, encompassing residues 231-265.  237 

Using the HBdilute option, ProFlex then proceeds to analyze the protein at increasing 238 
hydrogen bond energy levels, mimicking the process of gradually heating the protein and 239 
observing how the energy-dependent hydrogen bonds break, one by one.  Hydrophobic 240 
interactions, on the other hand, remain or tend to become stronger with moderate increases in 241 
energy [23].  Each time the breakage of a hydrogen bond dilutes the constraint network 242 
sufficiently that part of the protein becomes flexible (which ProFlex assesses quantitatively, using 243 
rigidity theory), a new line showing rigid and flexible regions is written in the HBdilute output 244 
(which is also provided in text format).  Each new, separately rigid region appears as a bar in a 245 
different color (green, dark blue, light blue, and orange, in this case).  The H-bond energy level for 246 
each line appears in kcal/mol in the second column from the left, with all hydrogen bonds in the 247 
current bond network being at least as strong as (equally or more negative than) this energy. The 248 
donor and acceptor atoms of the H-bond that was most recently broken are reported at the end each 249 
line. As a whole, the hydrogen bond dilution profile for a protein can be viewed as a profile of 250 
structural rigidity and flexibility from lowest energy (top line) to highest energy (bottom line), and 251 
used to identify the most persistently rigid or structurally stable regions in the protein, as well as 252 
how flexibility evolves in regions of the protein with increasing energy.  Coupling information can 253 
also be derived from this output for the rigid region.  For instance, helices H2, H3, H5, H6 and H7 254 
all participate in one rigid cluster (red region) at the energy at which their helix labels appear in the 255 
center of Figure 3(A), whereas H1 and H4 at that energy are separately rigid (green and light blue 256 
bars) and H8 has become almost entirely flexible (black line). 257 

 258 
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Figure 2. Schematic of how (A) ProFlex results for a GPCR correspond to (B) a 3-dimensional 259 
structural representation of flexibility/rigidity; (C) these flexibility/rigidity features are tabulated as 260 
discrete features for machine learning; and (D) a KNN classifier is employed with the features for 261 
activity prediction.  262 
 263 
For the flexibility/rigidity analysis of all GPCRs, the highest (most negative) energy was chosen 264 

at which 70% or more of the residues were part of a rigid region. This 70% rigid level corresponds 265 
to a native-like state in which most GPCR helices and parts of the loops typically contribute to a 266 
large scaffold-like rigid region (l), with one or more of the helices and loops becoming separately 267 
rigid (s) or flexible (f). This energy level for β2-adrenergic receptor is indicated in Figure 2(A) by the 268 
helix labels H1, H2, H3, etc., appearing on the corresponding hydrogen bond dilution line. Figure 269 
2(B) shows how the rigid regions at this energy level map onto the 3-dimensional structure of 270 
β2-adrenergic receptor.  The largest rigid region (red ribbon) is comprised by helix 2, helix 3, most 271 
of helix 5, and an extracellular short helix (top of figure, residues 177-187, not assigned a helix 272 
number since this helix is absent in other GPCRs) is part of the mostly rigid loop connecting helices 273 
4 and 5.  Separately rigid regions appear in helix 1 (green ribbon) and helix 4 (light blue ribbon), 274 
and the position of the bound ligand (not included in ProFlex analysis) is indicated by the narrow 275 
tubes in green (carbon atoms), blue (nitrogen atoms) and red (oxygen atoms) behind the 276 
extracellular (upper part) of helices 3 and 4.  Regions appearing in light grey in the structure are 277 
flexible at this energy level, corresponding to the horizontal black-lined regions in Figure 2(A). 278 

2.4. Machine Learning with ProFlex Features 279 
To identify characteristic flexibility features and avoid overfitting when predicting protein 280 

activity, we focused on identifying the subset of features most likely to contain useful information 281 
(Figure 3).  This was done in two ways. A profile of the frequency at which each segment (e.g., 282 
H1.1) was observed by ProFlex to be flexible, separately rigid, or part of the largest rigid region in 283 
active versus inactive structures (see Results) was used to identify features (e.g., ECL1l) with signifi- 284 
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 285 
Figure 3. Flowchart of how ProFlex and machine learning are used to identify features that predict 286 
the active/inactive state of GPCRs from their distribution of flexible and rigid regions.  287 

cant differences in prevalence (at least 25%) between active and inactive GPCRs.  Those features 288 
showing the greatest difference in prevalence between active and inactive structures were 289 
considered sensitive features.  As a second approach, feature selection algorithms were used to 290 
identify a subset of features showing the greatest discrimination between active and inactive 291 
proteins.  Here, the term feature refers to the flexibility/rigidity state of each of the 29 segments in 292 
each GPCR structure. To identify useful feature subsets, we employed sequential feature selection 293 
(SFS) followed by exhaustive feature selection [24,25]. 294 

Exhaustive feature selection (EFS) evaluates all possible feature subsets that can be created 295 
from the original set (87 features). When evaluating all feature subsets, the goal is to select the one 296 
that maximizes a user-specified performance criterion, for example, the accuracy of a classification 297 
model trained to predict active/inactive protein structures.  While this approach is guaranteed to 298 
find the optimal feature subset, it is computationally intractable due to the large number of feature 299 
subsets to be considered, unless the initial feature set is small.  Even for small feature sets, the 300 
number of subsets can be prohibitively large. For example, the number of possible feature subsets 301 
of size 8 that can be created from a set of 29 features is more than 3 million (3,108,105). 302 

Similar to EFS, sequential feature selection (SFS) reduces the original d-dimensional feature 303 
space to a k-dimensional feature subspace, where k<d. By contrast, SFS is a greedy search paradigm 304 
that constructs feature sets in an iterative fashion guaranteed to only improve the quality of 305 
prediction, but it does not evaluate every possible feature set. SFS is a computationally manageable 306 
alternative to EFS, and in our case was used as a feature-filtering step prior to EFS.  This approach 307 
reduces the feature space to focus on features with the most predictive power. SFS exists in two 308 
modes, forward and backward SFS [25]. Backward mode SFS (Figure 4) removes features from the 309 
original feature set in an iterative fashion until the new, smaller feature subspace contains a 310 
user-specified number of features. In each iteration of the selection algorithm, an objective function 311 
is to be optimized. For instance, the objective function is commonly defined as minimizing the 312 
performance difference of a predictive model before and after removing a specific feature. In each 313 
round, backward-mode SFS eliminates the feature that causes the least performance loss upon 314 
removal [24]. 315 
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Figure 4. Illustration of backward sequential feature selection for identifying feature subsets that 342 
maximize the performance of a predictive model. In this study, the candidate feature subsets were 343 
evaluated by using leave-one-out cross-validation and the out-of-bag bootstrap method with a 344 
3-nearest neighbor classifier. The classifier accuracy in predicting active/inactive cases in the GPCR 345 
held-out test data was used to evaluate each feature subset, as detailed in Table 2. 346 

Similar to backward mode SFS, forward mode SFS creates a feature subset of a user-specified 347 
size from the original feature set. Forward mode SFS starts with an empty feature set, adding one 348 
feature at a time (the feature resulting in highest predictive accuracy) until the feature set reaches a 349 
user-specified size, m, which is smaller than the number of features available for selection (e.g., the 350 
87 flexibility values for structural segments in each GPCR). Since forward mode SFS starts with an 351 
empty feature set with features added one at a time, m iterations are necessary to obtain a feature 352 
subset of size m. In each iteration of forward mode SFS, the only features added to the training set 353 
are ones that were not added in prior iterations. 354 

In addition, so-called floating versions of forward and backward mode SFS can explore a 355 
larger portion of the space of all possible feature subsets compared to SFS while still being 356 
computationally tractable [25]. In contrast to backward mode SFS, floating backward mode 357 
selection allows an already removed feature to be added back at a later iteration, if it improves the 358 
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predictive performance of a classifier trained on this subset. Similarly, in floating forward selection, 359 
a feature that was previously added may be removed if this results in improved predictive 360 
accuracy. 361 

To evaluate the performance of different feature subsets, a k-nearest neighbor (KNN) classifier, 362 
implemented using Scikit-learn's KNeighborsClassifier model [13], was used in conjunction with 363 
leave-one-out cross-validation (LOOCV).  In LOOCV, the classification model is applied n times to 364 
the each of the left-out test cases being predicted, and each training set consists of the remaining n-1 365 
cases.  In other words, of the 27 GPCRs, one is left out as the test case to be predicted by the KNN 366 
classifier, and the feature values and known active/inactive state of the other 26 GPCRs are used to 367 
train the KNN classifier as shown in Figure 2. In each round, the model predicts whether the 368 
left-out case (represented by one GPCR feature set) corresponds to an active or inactive structure 369 
based on its nearest neighbors (feature sets plotted as points with activity labels) from the 27 GPCRs 370 
in the training set.   371 

An example of using training set feature values as input to the KNN classifier appears in Figure 372 
2(C), where GPCR X is the new GPCR (or left-out training case) for which the active or inactive state is 373 
to be predicted. In the KNN classifier, the values of features for the training set cases are plotted on 374 
axes in a multi-dimensional space (up to 8 dimensions, for up to 8 features).  In Figure 2(D), a subset 375 
of three key features, H5.1l, H2.2s, and H3.1f, is being tested to predict activity. The corresponding 376 
feature values for each GPCR in the training set are plotted in this 3-dimensional space.  2RH1, 377 
3EML, and 2V2Y are plotted as values (1, 0, 0), corresponding to H5.1 being part of the largest rigid 378 
region, H2.2 not being a separate rigid region, and H3.1 not being flexible.  These three proteins are 379 
all known members of the inactive class, in this two-class problem where a GPCR structure is defined 380 
as either active or inactive. Two known-active GPCRs, 3PQR and 2YDV, are plotted with their values 381 
(1, 0, 1).  5GLH, also active, is plotted with its (0, 1, 1) value, and the test case, GPCR X, is then 382 
plotted according to its feature values.  The KNN classifier considers the k nearest training set 383 
neighbors of the test case, GPCR X, in this feature space, by computing the Jaccard similarity 384 
coefficient to measure nearness. The KNN then predicts the class of GPCR X based on whether active 385 
or inactive training examples dominate as its nearest neighbors.  Generally, an odd number of 386 
neighbors (odd k values) are considered to avoid the possibility of an equal number of neighbors from 387 
the two classes (to avoid tie-breaking schemes), and a series of different k values are tested.  Class 388 
imbalance – the fact that more inactive GPCR structures than active GPCRs are available for training – 389 
must be addressed by the classifier in the choice of discriminatory features and an optimal k value; 390 
this is generally better than pruning examples from the training set, which loses useful information.  391 
The effect of class imbalance is considered again in the Results, in terms of the enhancement of 392 
predictive accuracy of the best feature sets relative to a dummy classifier, which simply predicts that 393 
all test cases match the dominant class in the training set (inactive). 394 

 After obtaining n predictions on the held-out data points in LOOCV for a given feature 395 
subset, the predictive accuracy for that set of features is computed as the percentage of predictions 396 
that were correct.  Predictive accuracy was also measured by bootstrap cross-validation. For each 397 
bootstrap iteration for the 27 GPCR cases in the dataset, a random sample of 27 structures was 398 
selected from the GPCR dataset with replacement (meaning that a structure could be selected at 399 
random more than once).  Every GPCR not in this training set was assigned to the out-of-bag test 400 
set.  This bootstrap process, defining training and test sets for use with the selected feature set for 401 
KNN classification, was iterated 10,000 times, allowing the calculation of mean accuracy and 402 
standard error values. The most accurate feature sets and their leave-one-out and bootstrap 403 
accuracy statistics are summarized in the Results. 404 

Finally, the key features, meaning the superset of the SFS best-predictor feature sets from 405 
above, plus the features selected based on exhibiting at least 25% difference in prevalence between 406 
active and inactive GPCRs, were input to exhaustive feature selection.  EFS enumerated all subsets 407 
of up to 8 key features as input to the KNN classifier, to predict whether each GPCR was active or 408 
inactive (Figure 3, Step 4).  Including more than 8 features did not enhance prediction, consistent 409 
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with the general statistical observation that overfitting is more likely to occur as the number of 410 
features approaches the number of cases being analyzed (27 in this study). 411 

The general exhaustive and sequential feature selection methods outlined in this section can be 412 
combined with any machine learning algorithm for classification, and the specific MLxtend 413 
software implementation of SFS and EFS used in this study is compatible with any classifier 414 
implemented in Scikit-learn. We repeated the steps outlined in this section using generalized linear 415 
models such as logistic regression and a linear support vector machine (SVM) instead of KNN.  416 
Both logistic regression and linear SVM resulted in feature subsets with lower predictive 417 
performance compared with the KNN classifier, which is likely due to the linear models' inability 418 
to capture the complex relationship between the input features and the class labels. A nonlinear 419 
radial basis function (RBF) kernel SVM was not considered in this study, as it requires extensive 420 
hyperparameter tuning and is thus prone to overfitting on a small dataset such as ours.  Finally, we 421 
chose and focused on KNN as the primary classifier for this study, because it does not require 422 
extensive hyperparameter tuning and remains interpretable; for instance, predictions for new 423 
structures can be analyzed by querying and analyzing its nearest-neighbor structures in the existing 424 
data set. 425 

2.5. Comparing GPCR Regions and Numeric Properties with Alignment Visualization Tools 426 
A challenge for GPCRs and many other protein families, given the evolutionary and functional 427 

diversity of sequences now available, is to identify which amino acid residues correspond between 428 
binding sites (or other regions of interest) when two sequences are homologous but cannot be aligned 429 
precisely (especially in less-conserved regions) by sequence similarity.  This problem is easier to 430 
address for proteins with known 3-dimensional structures, as considered here, because robust 431 
structural alignment tools such as Dali (http://ekhidna2.biocenter.helsinki.fi/dali/; [17]) are able to 432 
define which protein segments overlay significantly in 3D structure by comparing inter-alpha-carbon 433 
distance matrices rather than the amino acid sequences. The significance of the Dali structural 434 
alignment can evaluated by its Z-score, measuring the number of standard deviations this alignment 435 
scores above a random structural alignment, taking into account the length and closeness of 436 
alpha-carbon overlay. Significant similarities have Z-scores above 2 and usually correspond to similar 437 
protein folds.  From the resulting Dali structural alignment, the alignment of residues of interest to 438 
the user can be inferred.  439 

Figure 5. Comparison of the BRAT and BAT tools for annotating structure-based sequence 440 
alignment according to key residues (BRAT) or numeric property values from the B-value column 441 
of the PDB structure files (BAT).  442 
 443 
Two software utilities for highlighting sequence features of user interest, especially for 444 

proteins with regions of low sequence identity, have been developed in this work.  These tools, 445 
BAT and BRAT (for B-value (Residue) Alignment Tool), are documented and available via GitHub 446 
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(https://github.com/psa-lab/ Protein-Alignment-Tool). As summarized in Figure 5, BRAT facilitates 447 
identifying and visualizing the correspondence between sequence segments of interest to the user 448 
(such as ligand-binding residues or extracellular loop regions) and residue numbers in one protein 449 
when aligned with a possibly sequence-divergent homolog, by using Dali structural superposition 450 
as input.  BRAT alignment is written in HTML format suitable for publication or presentation, or 451 
comma-separated value (CSV) format suitable for further analysis, using single letter codes for the 452 
residues, with residue numbers labeled, and user-defined key residues highlighted. BRAT also 453 
supports automated definition of key residues based on the distance between residues and a 454 
user-specified ligand. The related BAT utility aligns and visualizes the temperature factor values 455 
(B-values) or other numeric properties recorded in the B-value column of PDB-formatted structure 456 
files, across two or more user-selected, Dali structurally aligned proteins. BAT writes the output of 457 
residues and correspondingly aligned B-values in CSV format, which can read and analyzed further 458 
by spreadsheet tools such as Excel.  These approaches provide more robust comparison between 459 
corresponding regions than a sequence-based approach for divergent sequences, such as the ligand 460 
binding sites or loop regions in GPCRs.  461 

A meaningful comparison between key regions in two proteins (e.g., ligand binding or 462 
allosteric pathway residues) depends upon a reliable alignment of their protein sequences, rather 463 
than requiring 3D structures.  For the present work, we focused on structure-based alignments 464 
because they allow definition of a clear correspondence between residues in protein regions where 465 
the sequence similarity is too low to allow confident sequence alignment.   The helpfulness of 466 
structure-based alignment is particularly clear for the ligand binding sites of different class A 467 
GPCRs, which bind remarkably diverse ligands and therefore are not well conserved in sequence, 468 
while being substantially conserved in 3D structure.  Structural alignment can define which 469 
residues between two proteins occur in the same position in the structure (or not).  Sequence 470 
alignment methods that align one sequence to a multiple sequence alignment for the protein family, 471 
where the constituent sequences are chosen to reflect the protein’s evolutionary diversity, can 472 
partially address the challenge of aligning divergent sequences.  This is because multiple sequence 473 
alignments containing many evolutionarily related sequences implicitly include information about 474 
the tolerance for different amino acid mutations and insertions or deletions at each position, which 475 
allows the alignment method to knowledgeably penalize for the presence of improbable residues or 476 
insertions or deletions at each position.  For low-identity regions, it is still important to evaluate a 477 
local measure of the likelihood that each region of the sequence is correctly aligned before 478 
considering the residues in the proteins to be equivalent.  Once such an alignment is available 479 
from any robust approach, formatting it like the standard Dali input (see documentation under 480 
https://github.com/psa-lab/ Protein-Alignment-Tool) will allow BRAT and BAT to run successfully.    481 

3. Results and Discussion 482 

3.1. Identifying Key Flexibility Features for Predicting Activity 483 

The frequency at which each structural segment occurs in a ProFlex-determined flexible, separately 484 
rigid, or largest rigid region in active versus inactive GPCR structures appears in Figure 6. Sensitive 485 
features to evaluate for predicting activity were derived from this profile, based on their large 486 
differences in frequency of occurrence between active (solid lines) and inactive structures (dashed 487 
line). If two flexibility categories for a given segment (e.g., ECL2l and ECL2f) both showed large 488 
differences in frequency between active and inactive structures, the feature with the larger 489 
difference was selected as the sensitive feature.  Features exhibiting a difference of 25-30% between 490 
active and inactive structures were ECL1l, H6.1s, and H8.2s.  Features H1.3s, H3.1f, ECL2l, H5.1l, 491 
and H7.2l all differed between active and inactive cases by 30-40%, while H7.1l differed by 44%. 492 
H2.1s and H2.2s were the most discriminatory features, exhibiting 50-55% difference between active 493 
and inactive structures.  Additional features selected by the forward or backward sequential 494 
feature selectors as most discriminatory between active and non-active cases were: H1.2f, ICL1f, 495 
H2.1f, H3.3f, ICL2f, H4.1l, H5.2f, H6.1f, H7.3s; and H2.3s, H2.1l, ECL1f, H1.3l, and H2.2s. 496 
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Figure 6. Average rigidity profiles of GPCR structures by subsection and activity. There were 9 516 
active structures and 18 inactive structures used for these average profiles. The occurrence values of 517 
the three rigidity assignments (f, l, and s) for active (or inactive) structures in each segment (e.g., 518 
H1.1.) sum to 1.0 (100%). 519 

3.2. Accurate Classification of GPCR Activity Based on the Flexibility of Key Regions 520 
 The top-performing four feature sets for predicting the activity of GPCRs in KNN classifier 521 
cross-validation appear in Table 2.  Interestingly, a subset of four flexibility features, H2.2s, ECL1l, 522 
H3.1f, and H5.1l, were common to the top four feature-based predictors (96.3% leave-one-out and 523 
79.6% bootstrap accuracy; top line in Table 2).  Predictive accuracy was enhanced slightly by 524 
adding two features, H2.1s, and H6.1f (second line in Table 2), to the above four. Figure 7 visualizes 525 
the spatial relationships between the top four structural flexibility features in a class A GPCR, 526 
β2-adrenergic receptor, where they were found to surround the ligand binding site.   527 

Table 2.  Accuracy of the highest-performing feature sets upon KNN classifier assignment of active 528 
or inactive state from leave-one-out and bootstrap testing on subsets of 27 GPCR structures 529 

Feature set 
Leave 

One Out 
Accuracy 

Bootstrap Mean 
Accuracy 

Standard 
Error  

ECL1l, H2.2s, 
H3.1f, H5.1l 96.3% 79.6% 14.0% 

ECL1l, H2.1s, 
H2.2s, H3.1f, 
H5.1l, H6.1f 

96.3% 81.7% 12.6% 

ECL1l, H2.2l, 
H2.2s, H3.1f, 
H5.1l, H6.1f 

96.3% 81.1% 12.5% 

ECL1, H2.1l, 
H2.2s, H3.1f, 
H5.1l, H6.1f 

96.3% 80.8% 12.5% 

Dummy classifier: 
always predicts 

inactive  
66.6% 60.4% 15.5% 
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3.3. Patterns of Flexibility and Correlation Between Activity-Predicting Features  530 
The features ECL1l and H5.1l were most important for predicting inactive states, followed by 531 

H6.1f, based on their enhanced occurrence in inactive GPCRs.  On the other hand, active GPCRs 532 
were associated with greater flexibility in the key regions, specifically the presence of H3.1f, H2.1s, 533 
and H2.2s; these three features were never observed in the inactive GPCRs. While up to eight 534 
features were included in the feature sets sampled exhaustively as input to the classifier, none of 535 
the top predictors included more than six features. The best-performing feature-based classifiers 536 
(Table 2) were well-balanced between features associated with active states versus inactive states. A 537 
dummy classifier that always predicted structures as inactive (comprising the dominant class, 18 of 538 
the 27 GPCR structures) was used to assess the gain in accuracy relative to using sensitive feature 539 
selection plus SFS with the KNN classifier. Table 2 indicates that the best feature-selection 540 
predictors yielded 30% higher leave-one-out predictive accuracy and 21% higher bootstrap 541 
accuracy than the dummy classifier (bottom line), while also having 3% less variability in bootstrap 542 
accuracy (as measured by standard error).  543 

How can these concepts and methods be applied to an individual GPCR, to help define 544 
residues that contribute to activation or inactivation?  Here we focus on one of the best-studied 545 
GPCRs, rhodopsin, given structures of its inactive (PDB entry 1GZM) and active (PDB entry 3PQR) 546 
states.  Of the six key flexibility features identified here across class A GPCRs, two differ 547 
significantly between inactive and active rhodopsin states. ProFlex results show that the H2.1 548 
region (the cytoplasmic third of helix 2) is part of the largest rigid region in inactive rhodopsin 549 
(known as opsin), while its initial residues are flexible in the active form.   Secondly, the H6.1 550 
region (the cytoplasmic third of helix 6) is separately rigid in opsin, while being flexible in active 551 
rhodopsin.  These flexibility changes are consistent with the trend of key regions in class A 552 
GPCRs, as a whole, to contribute to the largest rigid region (the protein scaffold) in the inactive 553 
state while exhibiting increased flexibility and uncoupling to other regions of the protein in the 554 
active state (Figure 7).  How do the ProFlex results compare with experiments characterizing the 555 
rhodopsin transition between inactive and active forms?  H6.1 includes the ionic lock residue 556 
E247, which forms a salt bridge with R135 in opsin but not in active rhodopsin. The loss of the ionic 557 
lock interaction is consistent with the ProFlex observation of increased flexibility in H6.1 upon 558 
activation.  Secondly, the cytoplasmic end of helix 6 (H6.1) is observed to hinge towards helix 5 559 
upon comparison of the active and inactive structures [26], which is consistent with the increased 560 
flexibility of H6.1 found by ProFlex in the active state. Narrowing down the most important protein 561 
flexibility transition sites for activation from the plethora of conformational changes observed 562 
between crystal structures is a valuable application for ProFlex machine learning.  This can 563 
suggest a much more focused set of experiments - to test H6.1 hinge residues, for instance - as well 564 
as indicating which flexibility transitions are shared with other class A GPCRs. 565 

We also asked: to what extent were the most predictive flexibility features correlated?  For 566 
instance, when ECL1 was observed to be part of the largest rigid region (resulting in feature ECL1l), 567 
was adjacent H3.1 flexible (H3.1f) or not?  Correlation analysis can help us understand whether 568 
the flexibility features work together or are relatively independent in influencing GPCR activity.  569 
To address this, Figure 8 shows pairwise correlation of the six features in the most accurate 570 
predictor (Table 2). The only highly correlated features were H2.1s and H2.2s; in structures where 571 
the N-terminal segment of helix 2 is separately rigid (in the H2.1s state), the central segment of helix 572 
also tends to be separately rigid (H2.2s), with a correlation coefficient of 0.78.  70% of the H2.1s 573 
and H2.2s occurrences are in active GPCRs. All other feature pairs in Figure 8 have absolute 574 
correlation values less than 0.45. Thus, most predictive features behave fairly independently of each 575 
other, while together being good predictors of an active or inactive GPCR state.  The only highly 576 
correlated features were H2.1s and H2.2s; in structures where the N-terminal segment of helix 2 is 577 
separately rigid (in the H2.1s state), the central segment of helix also tends to be separately rigid 578 
(H2.2s), with a correlation coefficient of 0.78.  70% of the H2.1s and H2.2s occurrences are in active 579 
GPCRs.  All other feature pairs in Figure 8 have absolute correlation values less than 0.45. Thus, 580 
most predictive features behave fairly independently of each other, while predicting well together. 581 
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 595 
Figure 7.  The four GPCR regions whose flexibility allows the most discrimination between active 596 
and inactive structures are highlighted in yellow; the remainder of the largest rigid region in human 597 
β2-adrenergic receptor (PDB entry 2RH1) appears in red, with two separately rigid regions in green 598 
and light blue ribbons (based on data from Figure 2). The H2.2, ECL1, H3.1, and H5.1 segments 599 
colocalize around the ligand site, which in this case hosts the blood pressure-reducing beta-blocker, 600 
carazolol. The extracellular side of the GPCR is at the top.  Trends in flexibility/rigidity of these 601 
four regions between active and inactive structures across all 27 GPCRs are annotated. 602 
 603 
 604 

 605 
 606 
 607 
 608 
 609 
 610 
 611 

 612 
 613 
 614 

 615 

Figure 8.  Pairwise Mathews correlation coefficient values [27] between the six features resulting in 616 
the highest-accuracy GPCR activity prediction. Absolute values near 1 reflect high correlation (e.g., 617 
feature 1 always present when feature 2 is present), values near 0 reflect a random relationship 618 
between the features, and values near -1 reflect anticorrelation (e.g., feature 1 present when feature 619 
2 is absent).  The coloring emphasizes high correlation values in red. Decreasing correlation values 620 
are highlighted in aqua (0.3-0.5), blue (0.2-0.3), dark blue (0.1-0.2), and white (~0). 621 

H2.2 region (yellow) tends 
to be a section of helix 
hinged to the end of the 
helix 2 (H2.3) in active 
structures, while it tends to 
be mutually rigid with the 
scaffold-like largest rigid 
region of the GPCR (red) in 
inactive structures

ECL1 region (yellow 
loop) is often part of the 
scaffold-like largest rigid 
region (red) in inactive 
structures, but usually 
flexible in active structures

H3.1 (yellow) can be 
flexible in active 
structures, whereas it is 
part of the scaffold-like 
largest rigid region (red) in 
inactive structures

H5.1 (yellow) tends to be 
part of the scaffold-like 
largest rigid region (red) 
in inactive structures, 
and separately rigid 
(hinging relative to the rest 
of H5) or flexible in active 
structures
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3.4. Comparison with a Crystallographic Measure of Flexibility for Active and Inactive GPCRs 622 
We then evaluated whether crystallographic thermal mobility (B-value) data present in PDB 623 

files could provide an alternative way of identifying regions that differ significantly in flexibility 624 
between active and inactive GPCRs. Figure 9 shows the B-value traces for a representative sample 625 
of three active and three inactive GPCRs; including traces for more structures made it difficult to 626 
visualize trends. In the inactive structures, two of the three (2VT4 and 3ODU) have similar, almost 627 
overlapping B-value traces, whereas 2RH1 shows relatively low variation in B-values from 628 
N-terminus to C-terminus. The pattern observed from the two similar inactive traces is that the 629 
loops ICL1, ICL2, ECL2, ICL3, and the N- and C-termini of the proteins are more flexible than the 630 
helical regions while ECL1 is more rigid (consistent with ProFlex analysis).  This is true of many 631 
protein structures, both membrane and soluble.  632 

Figure 9.  Main-chain crystallographic B-values plotted for three active (dashed line) and three 633 
inactive (solid line) class A GPCR structures.  Helix, loop, and switch regions are indicated along 634 
the top of the plot, with the ionic lock residues marked by blue diamonds, the transmission switch 635 
residues marked by blue pentagons, and the tyrosine toggle region indicated by a blue circle.  The 636 
structures were aligned by Dali prior to B-value comparison and indexed sequentially from the 637 
N-terminus, to avoid misalignment of structural features due to inconsistent residue numbering 638 
between GPCR structures. 639 

When the active structures were analyzed, the three B-value traces (5C1M, 5GLH, and 3QAK) 640 
had very different B-value scales.  If this difference in B-value baseline was ignored and the 641 
regions of variation within each protein were considered and compared, ICL1, ICL2, ECL3, the N- 642 
and C-termini, and regions roughly corresponding to ECL1 and ICL3 were found to be more 643 
flexible than the rest of the structure in at least 2 of the 3 active proteins.  ECL2 was missing 644 
(undefined coordinates) for all three structures, likely indicative of very high mobility, and thus is a 645 
potentially useful signature of the active state.  However, the loop and N- and C-terminal 646 
high-mobility features were all in common between active and inactive structures, aside from the 647 
relatively low B-values observed for ECL1 in inactive states compared with a high B-value, flexible 648 
state within or preceding this loop in active structures.  Overall, it would be more difficult to 649 
predict activity-associated regions from B-values because of their inconsistency in baseline 650 
magnitudes, and the limited variation observed within some of the proteins.  This is likely due to 651 
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the crystals being held at different temperatures during data collection, and the GPCRs packing 652 
differently in their crystal lattices (some more constrained than others).  Also, different methods 653 
were used for refining the structures, which can strongly affect B-values. Another consideration is 654 
that B-values measure mobility of atoms around their average coordinates.  Thus, an internally 655 
rigid helix with a hinge at one end, which is able to freely swing like a lever arm, can show large 656 
B-values at the swinging end of the helix and much smaller B-values near the hinge.  In contrast, 657 
ProFlex measures flexibility based on internal rotational degrees of freedom, rather than the 658 
Cartesian representation of mobility used for B-values.  ProFlex would therefore label the hinged, 659 
swinging helix to be separately rigid rather than flexible. Another difference between B-values and 660 
ProFlex evaluation of flexibility is that information on coordinated motion within flexible or rigid 661 
regions is an automatic feature of ProFlex analysis, whereas inferring coupling information from 662 
B-value data is computationally and memory-intensive, requiring principal component or essential 663 
dynamics analysis. 664 

3.5. Using the BRAT and BAT Alignment Visualization Tools to Identify Corresponding Sites and 665 
Quantitative Features from Structural Alignments of Sequence-diverse Homologs 666 

A challenge for working with a diverse set of homologs, such as the hundreds of GPCRs 667 
present in humans, is to define corresponding regions such as ligand binding sites or flexibility 668 
motifs when the sequences are too divergent to align confidently.  For this purpose, we developed 669 
two Python alignment visualization utilities (https://github.com/psa-lab/Protein-Alignment-Tool). 670 
The first is BRAT, which starts with a Dali pairwise structural alignment and then highlights 671 
regions of user interest, such as ligand binding residues, which can be defined by the user as 672 
residue ranges in a reference structure (e.g., 2RH1), or as the set of residues within a user-defined 673 
distance X (in Å) of a ligand atom (as computed by BRAT).  The output is a BRAT-formatted 674 
pairwise sequence alignment in either comma-separated value (CSV) or hypertext markup 675 
language (HTML) web-viewable format, which the user can further edit/annotate and incorporate 676 
in publications and presentations.  An example of BRAT output (Figure 10) shows the signature of 677 
6 flexibility features that enable prediction of whether a GPCR is inactive or active. 678 

BAT output (Figure 11) is similar to that from BRAT, while allowing multiple proteins to be 679 
visualized along with numeric values written by the PDB, or software such as ProFlex, in the 680 
B-value column of a PDB file.  681 

4. Conclusions 682 
This work on a set of 27 class A GPCRs presents several advances in the field of protein 683 

activity prediction that can enhance our understanding of how ligand binding affects activity:  684 
• By providing a software approach not previously used to assess protein activity, ProFlex, that 685 

predicts rigid and flexible regions and their coupling within a single protein structure.  This 686 
makes it unnecessary to compare protein structures, which may have a different underlying 687 
mechanism of activation.  Also, it is unnecessary to provide user-defined hypotheses 688 
regarding regions important for (in)activation.  Such hypotheses can bias towards prior 689 
knowledge, and limit the understanding of regions involved in activity.  690 
 691 
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Figure 10.  BRAT alignment (HTML view) of the sequences from PDB entries 2RH1 (human 705 
β2-adrenergic receptor) and sequence-divergent 5XSZ (zebrafish lysophosphatidic acid receptor 6; 706 
21% identical to human β2-adrenergic receptor), which highlights in boldface the residues in 2RH1 707 
and 5XSZ corresponding to the key features discussed in section 3.2.  Annotations of those regions 708 
appear as H2.1, etc., above the sequences. 709 

 710 

PDB 
entry Structurally Aligned Residues 		 		 		 		 		 		 		 		

 Chain ID, Residue Number C39 C40 D41 D42 D43 D44 D45 D46 D47 … 
2vt4 Residue Name GLN TRP GLU ALA GLY MET SER LEU LEU … 
  Flexibility Index 87.52 65.84 70.48 55.27 56.21 45.47 40.01 35.27 41.46 … 

 Chain ID, Residue Number - A32 A33 A34 A35 A36 A37 A38 A39 … 
2rh1 Residue Name - TRP VAL VAL GLY MET GLY ILE VAL … 
  Flexibility Index - 94.6 91.1 87.62 86.08 84.86 82.58 80.88 79.67 … 

 Chain ID, Residue Number - - - - - - - B43 B44 … 
3odu Residue Name - - - - - - - THR ILE … 
  Flexibility Index - - - - - - - 27.28 25.37 … 

 Chain ID, Residue Number - - - A7 A8 A9 A10 A11 A12 … 
3qak Residue Name - - - SER VAL TYR ILE THR VAL … 
  Flexibility Index - - - 69.69 67.31 61.19 59.49 60.78 58.29 … 

 Chain ID, Residue Number - - - - - - B72 B73 B74 … 
5c1m Residue Name - - - - - - ARG ASP VAL … 
  Flexibility Index - - - - - - 34.11 42.58 40.51 … 

 Chain ID, Residue Number - - - A102 A103 A104 A105 A106 A107 … 
5glh Residue Name - - - TYR ILE ASN THR VAL VAL … 
  Flexibility Index - - - 3.03 92.12 99.68 98.95 1.22 94.85 … 

Figure 11.  BAT output showing the alignment of 5 GPCR structures from the PDB (2RH1, 3ODU, 711 
3QAK, 5C1M, and 5GLH) from their Dali structural alignment with 2VT4 (β1-adrenergic receptor).  712 
Values from the B-value column, in this case containing the flexibility index value written by 713 
ProFlex (where 0 is most rigid and larger is more flexible) are also aligned.  714 
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• Additional utilities developed here in Python, BAT and BRAT, facilitate visualizing 715 
structurally-equivalent residues in key protein regions of interest, such as binding sites or 716 
switch regions, for proteins that are sufficiently divergent that the corresponding residues 717 
cannot be defined with high confidence from sequence alignment.  718 

• Though ProFlex can analyze a ligand-bound protein structure as input, in our machine learning 719 
approach, no data about the ligand or its contacts are used.  Instead, ProFlex pinpoints rigid 720 
regions created by constraints within the protein’s covalent, hydrogen bond, and hydrophobic 721 
contact network, as well as separate internally rigid regions that can move relative to the 722 
protein scaffold region, followed by flexible regions. 723 

• The flexibility and rigidity pattern within a protein structure defined by ProFlex can be used to 724 
create a set of features – segments of the protein labeled by their flexible, independently rigid, 725 
or mutually rigid state within the structure – that machine learning techniques such as feature 726 
selection and a classifier can use to focus down to the most discerning subset of features for 727 
predicting activity.   728 

• The resulting KNN classifier of active or inactive state can drive experimental protein and 729 
ligand design, by pinpointing specific flexibility features that are more prevalent in active 730 
versus inactive structures of the protein. The KNN classifier is also intuitive, since it uses the 731 
focused feature set to identify proteins of known activity or inactivity with the most similar 732 
features to the user’s protein.  This approach also can help group proteins according to similar 733 
flexibility motifs underlying (in)activation. 734 

• The GPCR activity classifier using the identified six flexibility features has high accuracy: 96% 735 
correct prediction in leave-one-out cross-validation across the set of 18 inactive and 9 active 736 
GPCR structures, and 82% correct prediction when measured on held-out test sets across 10,000 737 
iterations of bootstrap sampling.  The most-predictive features colocalize around the ligand 738 
binding site proximal to the extracellular surface of the membrane protein, and thus add 739 
information to the switch regions characterized by others (such as ionic lock and tyrosine 740 
toggle), which are close to the intracellular interface with signaling partners.  One of the six 741 
flexibility features, the third of helix 5 proximal to the extracellular interface, is adjacent to but 742 
non-overlapping with the transmission switch previously defined. Thus, the ProFlex-defined 743 
activation motif provides a direct connection between flexibility changes in the protein induced 744 
by ligand binding to those previously characterized in the transmission switch involving 745 
movements of helices 5 and 6 during activation. 746 

• This approach can help clarify how ligand binding generates an active state in the protein. For 747 
instance, one could first use the KNN step in this protocol to identify which GPCRs of known 748 
active/inactive state have the most similar flexibility state across the six key regions, relative to 749 
the user’s GPCR in complex with a designed or other test ligand. Then the protein-protein and 750 
protein-ligand contacts in the six key flexibility transition regions can be compared between the 751 
user’s complex and the most similar GPCR complexes. This analysis can suggest ligand 752 
functional group changes (making or breaking specific protein contacts) to enhance the ability 753 
to inactivate (or activate) the GPCR.   754 

• This intuitive feature-based classification of activity through machine learning is equally 755 
applicable to other protein families and other kinds of data.  For instance, instead of ProFlex 756 
flexibility, one could test whether a subset of features defined as the presence/absence of 757 
specific residue-residue contacts (such as intraprotein hydrogen bonds, salt bridges, aromatic 758 
interactions, and/or ligand contacts) predict an active or inactive state.  Because the feature 759 
selection and classifier can test many more combinations than a person could readily perform 760 
by synthesis/mutagenesis, and without bias, new information may result that usefully narrows 761 
the spectrum of experiments by homing in on key features of activation.   762 
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